Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 154: 105340, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753288

RESUMO

Bergmann glia (BG) are highly specialized radial astrocytes of the cerebellar cortex, which play a key role in the uptake of synaptic glutamate via the excitatory amino acid transporter EAAT1. Multiple lines of evidence suggest that in cerebellar neurodegenerative diseases reactive BG has a negative impact on neuronal function and survival through compromised EAAT activity. A family of such diseases are those caused by expansion of CAG repeats in genes of the ataxin family, resulting in spinocerebellar ataxias (SCA). We investigated the contribution of BG to the pathogenesis of cerebellar neurodegeneration in a model of SCA1, which was induced by expression of a polyglutamine mutant of ataxin-1 (ATXN1[Q85]) in BG specifically. We compared the outcomes with a novel model where we triggered excitotoxicity by a chronic optogenetic activation of BG with channelrhodopsin-2 (ChR2). In both cases we detected evidence of reduced glutamate uptake manifested by prolongation of excitatory postsynaptic currents in Purkinje cells which is consistent with documented reduction of expression and/or function of EAAT1. In both models we detected astroglyosis and Purkinje cells atrophy. Finally, the same pattern was detected in a knock-in mouse which expresses a polyglutamine mutant ataxin-1 ATXN1[Q154] in a non-cell-selective manner. Our results suggest that ATXN1[Q85] and ChR2-induced insult targeted to BG closely mimics SCA1 pathology, where excessive glutamate signaling appears to be a common feature likely being an important contributor to cerebellar neurodegeneration.


Assuntos
Ataxina-1/biossíntese , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 1 de Aminoácido Excitatório/biossíntese , Neuroglia/metabolismo , Optogenética/efeitos adversos , Células de Purkinje/metabolismo , Animais , Ataxina-1/genética , Morte Celular/fisiologia , Transportador 1 de Aminoácido Excitatório/genética , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/patologia , Estimulação Luminosa/efeitos adversos , Células de Purkinje/patologia
2.
Brain Sci ; 9(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013844

RESUMO

Astrogliosis is a pathological process that affects the density, morphology, and function of astrocytes. It is a common feature of brain trauma, autoimmune diseases, and neurodegeneration including spinocerebellar ataxia type 1 (SCA1), a poorly understood neurodegenerative disease. S100ß is a Ca2+ binding protein. In SCA1, excessive excretion of S100ß by reactive astrocytes and its uptake by Purkinje cells has been demonstrated previously. Under pathological conditions, excessive extracellular concentration of S100ß stimulates the production of proinflammatory cytokines and induces apoptosis. We modeled astrogliosis by S100ß injections into cerebellar cortex in mice. Injections of S100ß led to significant changes in Bergmann glia (BG) cortical organization and affected their processes. S100ß also changed morphology of the Purkinje cells (PCs), causing a significant reduction in the dendritic length. Moreover, the short-term synaptic plasticity and depolarization-induced suppression of synaptic transmission were disrupted after S100ß injections. We speculate that these effects are the result of Ca2+-chelating properties of S100ß protein. In summary, exogenous S100ß induced astrogliosis in cerebellum could lead to neuronal dysfunction, which resembles a natural neurodegenerative process. We suggest that astrocytes play an essential role in SCA1 pathology, and that astrocytic S100ß is an important contributor to this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA