Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768006

RESUMO

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Assuntos
COVID-19 , Influenza Humana , Neoplasias , Animais , Humanos , Influenza Humana/patologia , Camundongos , Microglia/patologia , Bainha de Mielina , Neoplasias/patologia , SARS-CoV-2
2.
Cell ; 181(7): 1445-1449, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32533917

RESUMO

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Assuntos
Mobilidade Ocupacional , Pesquisadores/tendências , Pesquisa/tendências , Logro , Pesquisa Biomédica , Humanos , Pesquisadores/educação , Ciência/educação , Ciência/tendências , Universidades
3.
Nature ; 630(8017): 677-685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839962

RESUMO

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Assuntos
Analgésicos Opioides , Bainha de Mielina , Vias Neurais , Plasticidade Neuronal , Recompensa , Área Tegmentar Ventral , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Optogenética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Linhagem da Célula
4.
Nature ; 623(7986): 366-374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914930

RESUMO

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.


Assuntos
Adaptação Fisiológica , Glioma , Plasticidade Neuronal , Sinapses , Animais , Criança , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Progressão da Doença , Glioma/metabolismo , Glioma/patologia , Ácido Glutâmico/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Microambiente Tumoral , Optogenética
5.
Nature ; 594(7862): 277-282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040258

RESUMO

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Assuntos
Transformação Celular Neoplásica/genética , Genes da Neurofibromatose 1 , Mutação , Neurofibromina 1/genética , Neurônios/metabolismo , Glioma do Nervo Óptico/genética , Glioma do Nervo Óptico/patologia , Animais , Astrocitoma/genética , Astrocitoma/patologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos da radiação , Nervo Óptico/citologia , Nervo Óptico/efeitos da radiação , Estimulação Luminosa , Retina/citologia , Retina/efeitos da radiação
6.
bioRxiv ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39386427

RESUMO

Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses. However, the putative roles of other neuronal subpopulations - especially neuromodulatory neurons located in the brainstem that project to long-range target sites in midline anatomical locations where DMGs arise - remain largely unexplored. Here, we demonstrate that the activity of cholinergic midbrain neurons modulates both healthy OPC and malignant DMG proliferation in a circuit-specific manner at sites of long-range cholinergic projections. Optogenetic stimulation of the cholinergic pedunculopontine nucleus (PPN) promotes glioma growth in pons, while stimulation of the laterodorsal tegmentum nucleus (LDT) facilitates proliferation in thalamus, consistent with the predominant projection patterns of each cholinergic midbrain nucleus. Reciprocal signaling was evident, as increased activity of cholinergic neurons in the PPN and LDT was observed in pontine DMG-bearing mice. In co-culture, hiPSC-derived cholinergic neurons form neuron-to-glioma networks with DMG cells and robustly promote proliferation. Single-cell RNA sequencing analyses revealed prominent expression of the muscarinic receptor genes CHRM1 and CHRM3 in primary patient DMG samples, particularly enriched in the OPC-like tumor subpopulation. Acetylcholine, the neurotransmitter cholinergic neurons release, exerts a direct effect on DMG tumor cells, promoting increased proliferation and invasion through muscarinic receptors. Pharmacological blockade of M1 and M3 acetylcholine receptors abolished the activity-regulated increase in DMG proliferation in cholinergic neuron-glioma co-culture and in vivo. Taken together, these findings demonstrate that midbrain cholinergic neuron long-range projections to midline structures promote activity-dependent DMG growth through M1 and M3 cholinergic receptors, mirroring a parallel proliferative effect on healthy OPCs.

7.
Nat Neurosci ; 27(8): 1555-1564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816530

RESUMO

Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice.


Assuntos
Aprendizagem , Neurofibromina 1 , Plasticidade Neuronal , Oligodendroglia , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular/fisiologia , Aprendizagem/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Atividade Motora/genética , Mutação , Neurofibromina 1/genética , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/genética , Oligodendroglia/metabolismo
8.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711554

RESUMO

Neural activity is increasingly recognized as a critical regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth both through paracrine mechanisms and through electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses, while perisynaptic neurotransmitter signaling drives breast cancer brain metastasis growth. Outside of the CNS, innervation of tumors such as prostate, breast, pancreatic and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression. However, the extent to which the nervous system regulates lung cancer progression, either in the lung or when metastatic to brain, is largely unexplored. Small cell lung cancer (SCLC) is a lethal high-grade neuroendocrine tumor that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that, similar to glioma, metastatic SCLC cells in the brain co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Optogenetic stimulation of cortical neuronal activity drives proliferation and invasion of SCLC brain metastases. In the brain, SCLC cells exhibit electrical currents and consequent calcium transients in response to neuronal activity, and direct SCLC cell membrane depolarization is sufficient to promote the growth of SCLC tumors. In the lung, vagus nerve transection markedly inhibits primary lung tumor formation, progression and metastasis, highlighting a critical role for innervation in overall SCLC initiation and progression. Taken together, these studies illustrate that neuronal activity plays a crucial role in dictating SCLC pathogenesis in both primary and metastatic sites.

9.
Neuron ; 111(22): 3604-3618.e11, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657440

RESUMO

Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.


Assuntos
Fatores de Transcrição ARNTL , Esclerose Múltipla , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Privação do Sono/metabolismo , Camundongos Knockout , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Esclerose Múltipla/metabolismo , Sono/genética , Diferenciação Celular
10.
bioRxiv ; 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35043113

RESUMO

Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection. Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection - without neuroinvasion - and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function. Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.

11.
Dev Cell ; 56(13): 1821-1832, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34192527

RESUMO

Developmental myelination is a protracted process that extends well into postnatal life. Cell-intrinsic mechanisms operate in myelin-forming oligodendrocytes, as well as microenvironmental interactions that guide and modulate every aspect of myelination, from oligodendrocyte precursor cell migration to oligodendrocyte differentiation and the formation of stable myelin internodes. During development and throughout adult life, neuron-oligodendroglial interactions shape activity and experience-dependent myelin adaptations to fine-tune neural circuit dynamics and promote healthy neurological function.


Assuntos
Microambiente Celular/genética , Bainha de Mielina/genética , Neurônios/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Humanos
12.
Elife ; 82019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31625910

RESUMO

Neurons form bona fide synapses with oligodendrocyte precursor cells (OPCs), but the circuit context of these neuron to OPC synapses remains incompletely understood. Using monosynaptically-restricted rabies virus tracing of OPC afferents, we identified extensive afferent synaptic inputs to OPCs residing in secondary motor cortex, corpus callosum, and primary somatosensory cortex of adult mice. These inputs primarily arise from functionally-interconnecting cortical areas and thalamic nuclei, illustrating that OPCs have strikingly comprehensive synaptic access to brain-wide projection networks. Quantification of these inputs revealed excitatory and inhibitory components that are consistent in number across brain regions and stable in barrel cortex despite whisker trimming-induced sensory deprivation.


Assuntos
Vias Aferentes/anatomia & histologia , Corpo Caloso/anatomia & histologia , Córtex Motor/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Córtex Somatossensorial/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Corpo Caloso/fisiologia , Camundongos , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia
13.
Elife ; 62017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28742022

RESUMO

Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/genética , Paraplegia Espástica Hereditária/genética , Animais , Transporte Axonal , Axônios/ultraestrutura , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Drosophila melanogaster/classificação , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Humanos , Larva/citologia , Larva/genética , Larva/metabolismo , Larva/ultraestrutura , Proteínas de Membrana Transportadoras/deficiência , Mutação , Filogenia , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia
14.
Science ; 370(6523): 1414-1415, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33335053
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA