Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968120

RESUMO

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Assuntos
Quinases Dyrk , Proteínas Hedgehog , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Repressoras
2.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044553

RESUMO

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Assuntos
Neoplasias Hepáticas , Proteínas R-SNARE , Sinaptotagmina I , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Proteico , Proteínas R-SNARE/metabolismo , Sinaptotagmina I/metabolismo , Microambiente Tumoral
3.
J Cell Sci ; 135(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35582972

RESUMO

Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Culina , Dano ao DNA , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Culina/metabolismo , Dano ao DNA/genética , Instabilidade Genômica/genética , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Quinases Dyrk
4.
Biomarkers ; 29(2): 55-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361436

RESUMO

BACKGROUND: The conventional markers for hepatocellular carcinoma (HCC), α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP), have several limitations; both have low sensitivity in patients with early-stage HCC; low sensitivity for AFP with HCC after eliminating hepatitis C virus (HCV); low specificity for DCP in patients with non-viral HCC, which is increasing worldwide; low specificity for AFP in patients with liver injury; and low specificity for DCP in patients treated with warfarin. To overcome these issues, the identification of novel biomarkers is an unmet need. OBJECTIVE: This study aimed to assess the usefulness of serum protein kinase C delta (PKCδ) for detecting these HCCs. METHODS: PKCδ levels were measured using a sandwich enzyme-linked immunosorbent assay in 363 chronic liver disease (CLD) patients with and without HCC. RESULTS: In both viral and non-viral CLD, PKCδ can detect HCCs with high sensitivity and specificity, particularly in the very early stages. Notably, the value and sensitivity of PKCδ were not modified by HCV elimination status. Liver injury and warfarin administration, which are known to cause false-positive results for conventional markers, did not modify PKCδ levels. CONCLUSIONS: PKCδ is an enhanced biomarker for the diagnosis of HCC that compensates for the drawbacks of conventional markers.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , alfa-Fetoproteínas , Biomarcadores Tumorais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Proteína Quinase C-delta , Varfarina , Sensibilidade e Especificidade , Precursores de Proteínas , Biomarcadores , Protrombina/metabolismo
5.
Cancer Sci ; 114(6): 2471-2484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36851883

RESUMO

Protein kinase C delta (PKCδ) is a multifunctional serine-threonine kinase implicated in cell proliferation, differentiation, tumorigenesis, and therapeutic resistance. However, the molecular mechanism of PKCδ in colorectal cancer (CRC) remains unclear. In this study, we showed that PKCδ acts as a negative regulator of cellular senescence in p53 wild-type (wt-p53) CRC. Immunohistochemical analysis revealed that PKCδ levels in human CRC tissues were higher than those in the surrounding normal tissues. Deletion studies have shown that cell proliferation and tumorigenesis in wt-p53 CRC is sensitive to PKCδ expression. We found that PKCδ activates p21 via a p53-independent pathway and that PKCδ-kinase activity is essential for p21 activity. In addition, both repression of PKCδ expression and inhibition of PKCδ activity induced cellular senescence-like phenotypes, including increased senescence-associated ß-galactosidase (SA-ß-gal) staining, low LaminB1 expression, large nucleus size, and senescence-associated secretory phenotype (SASP) detection. Finally, a kinase inhibitor of PKCδ suppressed senescence-dependent tumorigenicity in a dose-dependent manner. These results offer a mechanistic insight into CRC survival and tumorigenesis. In addition, a novel therapeutic strategy for wt-p53 CRC is proposed.


Assuntos
Neoplasias Colorretais , Proteína Quinase C-delta , Humanos , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Senescência Celular/genética , Neoplasias Colorretais/patologia , Carcinogênese
6.
Fungal Genet Biol ; 165: 103777, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669556

RESUMO

Colletotrichum orbiculare is employed as a model fungus to analyze molecular aspects of plant-fungus interactions. Although gene disruption via homologous recombination (HR) was established for C. orbiculare, this approach is laborious due to its low efficiency. Here we developed methods to generate multiple knockout mutants of C. orbiculare efficiently. We first found that CRISPR-Cas9 system massively promoted gene-targeting efficiency. By transiently introducing a CRISPR-Cas9 vector, more than 90% of obtained transformants were knockout mutants. Furthermore, we optimized a self-excision Cre-loxP marker recycling system for C. orbiculare because a limited availability of desired selective markers hampers sequential gene disruption. In this system, the integrated selective marker is removable from the genome via Cre recombinase driven by a xylose-inducible promoter, enabling the reuse of the same selective marker for the next transformation. Using our CRISPR-Cas9 and Cre-loxP systems, we attempted to identify functional sugar transporters involved in fungal virulence. Multiple disruptions of putative quinate transporter genes restricted fungal growth on media containing quinate as a sole carbon source, confirming their functionality as quinate transporters. However, our analyses showed that quinate acquisition was dispensable for infection to host plants. In addition, we successfully built mutations of 17 cellobiose transporter genes in a strain. From the data of knockout mutants that we established in this study, we inferred that repetitive rounds of gene disruption using CRISPR-Cas9 and Cre-loxP systems do not cause adverse effects on fungal virulence and growth. Therefore, these systems will be powerful tools to perform a systematic loss-of-function approach for C. orbiculare.


Assuntos
Sistemas CRISPR-Cas , Colletotrichum , Ácido Quínico , Integrases/genética , Integrases/metabolismo , Colletotrichum/genética , Edição de Genes/métodos
7.
New Phytol ; 238(4): 1578-1592, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939621

RESUMO

The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.


Assuntos
Cucumis sativus , Cucurbitaceae , Virulência/genética , Especificidade de Hospedeiro , Cucumis sativus/microbiologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiologia , Transcriptoma , Nicotiana/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241771

RESUMO

Extended-synaptotagmin 1 (E-Syt1) is an endoplasmic reticulum membrane protein that is involved in cellular lipid transport. Our previous study identified E-Syt1 as a key factor for the unconventional protein secretion of cytoplasmic proteins in liver cancer, such as protein kinase C delta (PKCδ); however, it is unclear whether E-Syt1 is involved in tumorigenesis. Here, we showed that E-Syt1 contributes to the tumorigenic potential of liver cancer cells. E-Syt1 depletion significantly suppressed the proliferation of liver cancer cell lines. Database analysis revealed that E-Syt1 expression is a prognostic factor for hepatocellular carcinoma (HCC). Immunoblot analysis and cell-based extracellular HiBiT assays showed that E-Syt1 was required for the unconventional secretion of PKCδ in liver cancer cells. Furthermore, deficiency of E-Syt1 suppressed the activation of insulin-like growth factor 1 receptor (IGF1R) and extracellular-signal-related kinase 1/2 (Erk1/2), both of which are signaling pathways mediated by extracellular PKCδ. Three-dimensional sphere formation and xenograft model analysis revealed that E-Syt1 knockout significantly decreased tumorigenesis in liver cancer cells. These results provide evidence that E-Syt1 is critical for oncogenesis and is a therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sinaptotagmina I/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular , Carcinogênese
9.
Mol Plant Microbe Interact ; 35(7): 554-566, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34726476

RESUMO

In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Epitopos , Leucina , Peptídeos , Imunidade Vegetal/fisiologia , Plantas , Proteínas Serina-Treonina Quinases , Receptores de Reconhecimento de Padrão/genética , Tolerância ao Sal/genética
10.
Cancer Sci ; 113(7): 2378-2385, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490382

RESUMO

Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR-expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C-terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ-EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ-targeting therapy for liver cancer.


Assuntos
Receptores ErbB , Neoplasias Hepáticas , Proteína Quinase C-delta , Linhagem Celular , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(2): 496-505, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584105

RESUMO

Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamianaMagnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors.


Assuntos
Proteínas de Transporte/imunologia , Proteínas Fúngicas/imunologia , Magnaporthe/imunologia , Nicotiana , Doenças das Plantas , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia
12.
Semin Cell Dev Biol ; 83: 106-114, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29287835

RESUMO

The sessile nature of plants has driven their evolution to cope flexibly with ever-changing surrounding environments. The development of stress tolerance traits is complex, and a broad range of cellular processes are involved. Recent studies have revealed that sugar transporters contribute to environmental stress tolerance in plants, suggesting that sugar flow is dynamically fluctuated towards optimization of cellular conditions in adverse environments. Here, we highlight sugar compartmentation mediated by sugar transporters as an adaptation strategy against biotic and abiotic stresses. Competition for sugars between host plants and pathogens shapes their evolutionary arms race. Pathogens, which rely on host-derived carbon, manipulate plant sugar transporters to access sugars easily, while plants sequester sugars from pathogens by enhancing sugar uptake activity. Furthermore, we discuss pathogen tactics to circumvent sugar competition with host plants. Sugar transporters also play a role in abiotic stress tolerance. Exposure to abiotic stresses such as cold or drought stress induces sugar accumulation in various plants. We also discuss how plants allocate sugars under such conditions. Collectively, these findings are relevant to basic plant biology as well as potential applications in agriculture, and provide opportunities to improve crop yield for a growing population.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/química , Estresse Fisiológico/genética , Açúcares/química , Adaptação Fisiológica
13.
EMBO J ; 35(1): 46-61, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26574534

RESUMO

Pathogens infect a host by suppressing defense responses induced upon recognition of microbe-associated molecular patterns (MAMPs). Despite this suppression, MAMP receptors mediate basal resistance to limit host susceptibility, via a process that is poorly understood. The Arabidopsis leucine-rich repeat (LRR) receptor kinase BAK1 associates and functions with different cell surface LRR receptors for a wide range of ligands, including MAMPs. We report that BAK1 depletion is linked to defense activation through the endogenous PROPEP peptides (Pep epitopes) and their LRR receptor kinases PEPR1/PEPR2, despite critical defects in MAMP signaling. In bak1-knockout plants, PEPR elicitation results in extensive cell death and the prioritization of salicylate-based defenses over jasmonate-based defenses, in addition to elevated proligand and receptor accumulation. BAK1 disruption stimulates the release of PROPEP3, produced in response to Pep application and during pathogen challenge, and renders PEPRs necessary for basal resistance. These findings are biologically relevant, since specific BAK1 depletion coincides with PEPR-dependent resistance to the fungal pathogen Colletotrichum higginsianum. Thus, the PEPR pathway ensures basal resistance when MAMP-triggered defenses are compromised by BAK1 depletion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Colletotrichum/imunologia , Técnicas de Inativação de Genes , Proteínas Serina-Treonina Quinases/genética , Transativadores/metabolismo
14.
EMBO J ; 33(1): 62-75, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24357608

RESUMO

Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2- and elf18-treated plants points to co-activation of otherwise antagonistic jasmonate- and salicylate-mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen-induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Imunidade Vegetal , Transdução de Sinais , Bactérias/imunologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Precursores de Proteínas/metabolismo , Salicilatos/metabolismo
15.
Plant Cell ; 25(2): 609-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23396830

RESUMO

Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K(+) uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K(+) channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using (86)radioactive rubidium ion ((86)Rb(+)) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Estresse Fisiológico , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Desidratação , Secas , Ácidos Indolacéticos/metabolismo , Mutação , Osmose , Fosforilação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Canais de Potássio/genética , Proteínas Quinases/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(15): 6211-6, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23431187

RESUMO

Recognition of molecular patterns characteristic of microbes or altered-self leads to immune activation in multicellular eukaryotes. In Arabidopsis thaliana, the leucine-rich-repeat receptor kinases FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize bacterial flagellin and elongation factor EF-Tu (and their elicitor-active epitopes flg22 and elf18), respectively. Likewise, PEP1 RECEPTOR1 (PEPR1) and PEPR2 recognize the elicitor-active Pep epitopes conserved in Arabidopsis ELICITOR PEPTIDE PRECURSORs (PROPEPs). Here we reveal that loss of ETHYLENE-INSENSITIVE2 (EIN2), a master signaling regulator of the phytohormone ethylene (ET), lowers sensitivity to both elf18 and flg22 in different defense-related outputs. Remarkably, in contrast to a large decrease in FLS2 expression, EFR expression and receptor accumulation remain unaffected in ein2 plants. Genome-wide transcriptome profiling has uncovered an inventory of EIN2-dependent and EFR-regulated genes. This dataset highlights important aspects of how ET modulates EFR-triggered immunity: the potentiation of salicylate-based immunity and the repression of a jasmonate-related branch. EFR requires ET signaling components for PROPEP2 activation but not for PROPEP3 activation, pointing to both ET-dependent and -independent engagement of the PEPR pathway during EFR-triggered immunity. Moreover, PEPR activation compensates the ein2 defects for a subset of EFR-regulated genes. Accordingly, ein2 pepr1 pepr2 plants exhibit additive defects in EFR-triggered antibacterial immunity, compared with ein2 or pepr1 pepr2 plants. Our findings suggest that the PEPR pathway not only mediates ET signaling but also compensates for its absence in enhancing plant immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Etilenos/química , Doenças das Plantas/microbiologia , Imunidade Vegetal , Alelos , Arabidopsis/microbiologia , Bactérias/metabolismo , Genes de Plantas , Genoma , Genoma de Planta , Hormônios/metabolismo , Mutação , Peptídeos/química , Transdução de Sinais , Fatores de Transcrição/metabolismo
17.
Rheumatology (Oxford) ; 54(2): 349-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25172934

RESUMO

OBJECTIVE: The aim of this study was to identify cold-associated autoantibodies in patients with RP secondary to CTDs. METHODS: Indirect immunofluorescence staining was performed on non-permeabilized cold-stimulated normal human dermal microvascular endothelial cells (dHMVECs), using patients' sera. Cold-induced alterations in cell surface proteomes were analysed by isobaric tag for relative and absolute quantitation (iTRAQ) analysis. Serological proteome analysis (SERPA) was applied to screen cold-associated autoantigens. The prevalence of the candidate autoantibody was determined by ELISA in 290 patients with RP secondary to CTDs (SSc, SLE or MCTD), 10 patients with primary RP and 27 healthy controls. RESULTS: Enhanced cell surface immunoreactivity was detected in cold-stimulated dHMVECs when incubated with sera from patients with secondary RP. By iTRAQ analysis, many proteins, including heterogeneous nuclear ribonucleoprotein K (hnRNP-K), were found to be increased on the cell surface of dHMVECs after cold stimulation. By the SERPA approach, hnRNP-K was identified as a candidate autoantigen in patients with secondary RP. Cold-induced translocation of hnRNP-K to the cell surface was confirmed by immunoblotting and flow cytometry. By ELISA analysis, patients with secondary RP show a significantly higher prevalence of anti-hnRNP-K autoantibody (30.0%, 61/203) than patients without RP (9.2%, 8/87, P = 0.0001), patients with primary RP (0%, 0/10, P = 0.0314) or healthy controls (0%, 0/27, P = 0.0001). CONCLUSION: By comprehensive proteomics, we identified hnRNP-K as a novel cold-associated autoantigen in patients with secondary RP. Anti-hnRNP-K autoantibody may potentially serve as a biomarker for RP secondary to various CTDs.


Assuntos
Autoantígenos/metabolismo , Temperatura Baixa , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Doença de Raynaud/imunologia , Autoanticorpos/metabolismo , Autoimunidade/fisiologia , Estudos de Casos e Controles , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos
18.
Proc Natl Acad Sci U S A ; 109(16): 6343-7, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22492932

RESUMO

Polyamines (PAs) are ubiquitous, polycationic compounds that are essential for the growth and survival of all organisms. Although the PA-uptake system plays a key role in mammalian cancer and in plant survival, the underlying molecular mechanisms are not well understood. Here, we identified an Arabidopsis L-type amino acid transporter (LAT) family transporter, named RMV1 (resistant to methyl viologen 1), responsible for uptake of PA and its analog paraquat (PQ). The natural variation in PQ tolerance was determined in 22 Arabidopsis thaliana accessions based on the polymorphic variation of RMV1. An RMV1-GFP fusion protein localized to the plasma membrane in transformed cells. The Arabidopsis rmv1 mutant was highly resistant to PQ because of the reduction of PQ uptake activity. Uptake studies indicated that RMV1 mediates proton gradient-driven PQ transport. RMV1 overexpressing plants were hypersensitive to PA and PQ and showed elevated PA/PQ uptake activity, supporting the notion that PQ enters plant cells via a carrier system that inherently functions in PA transport. Furthermore, we demonstrated that polymorphic variation in RMV1 controls PA/PQ uptake activity. Our identification of a molecular entity for PA/PQ uptake and sensitivity provides an important clue for our understanding of the mechanism and biological significance of PA uptake.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Membrana Transportadoras/genética , Paraquat/metabolismo , Poliaminas/metabolismo , Polimorfismo de Nucleotídeo Único , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Paraquat/farmacologia , Plantas Geneticamente Modificadas , Poliaminas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
19.
Sci Adv ; 10(4): eadk4131, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266087

RESUMO

Pathogen recognition triggers energy-intensive defense systems. Although successful defense should depend on energy availability, how metabolic information is communicated to defense remains unclear. We show that sugar, especially glucose-6-phosphate (G6P), is critical in coordinating defense in Arabidopsis. Under sugar-sufficient conditions, phosphorylation levels of calcium-dependent protein kinase 5 (CPK5) are elevated by G6P-mediated suppression of protein phosphatases, enhancing defense responses before pathogen invasion. Subsequently, recognition of bacterial flagellin activates sugar transporters, leading to increased cellular G6P, which elicits CPK5-independent signaling promoting synthesis of the phytohormone salicylic acid (SA) for antibacterial defense. In contrast, while perception of fungal chitin does not promote sugar influx or SA accumulation, chitin-induced synthesis of the antifungal compound camalexin requires basal sugar influx activity. By monitoring sugar levels, plants determine defense levels and execute appropriate outputs against bacterial and fungal pathogens. Together, our findings provide a comprehensive view of the roles of sugar in defense.


Assuntos
Arabidopsis , Açúcares , Transdução de Sinais , Antibacterianos , Antifúngicos , Quitina
20.
Plant Physiol ; 158(1): 408-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080602

RESUMO

Recognition of microbe-associated molecular patterns (MAMPs) leads to the generation of MAMP-triggered immunity (MTI), which restricts the invasion and propagation of potentially infectious microbes. It has been described that the perception of different bacterial and fungal MAMPs causes the repression of flavonoid induction upon light stress or sucrose application. However, the functional significance of this MTI-associated signaling output remains unknown. In Arabidopsis (Arabidopsis thaliana), FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR act as the pattern recognition receptors for the bacterial MAMP epitopes flg22 (of flagellin) and elf18 (of elongation factor [EF]-Tu), respectively. Here, we reveal that reactive oxygen species spiking and callose deposition are dispensable for the repression of flavonoid accumulation by both pattern recognition receptors. Importantly, FLS2-triggered activation of PATHOGENESIS-RELATED (PR) genes and bacterial basal defenses are enhanced in transparent testa4 plants that are devoid of flavonoids, providing evidence for a functional contribution of flavonoid repression to MTI. Moreover, we identify nine small molecules, of which eight are structurally unrelated, that derepress flavonoid accumulation in the presence of flg22. These compounds allowed us to dissect the FLS2 pathway. Remarkably, one of the identified compounds uncouples flavonoid repression and PR gene activation from the activation of reactive oxygen species, mitogen-activated protein kinases, and callose deposition, corroborating a close link between the former two outputs. Together, our data imply a model in which MAMP-induced repression of flavonoid accumulation serves a role in removing the inherent inhibitory action of flavonoids on an MTI signaling branch.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Flavonoides/metabolismo , Proteínas Quinases/metabolismo , Aciltransferases/imunologia , Aciltransferases/metabolismo , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/imunologia , Plântula/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Sacarose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA