Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Oncol Rep ; 45(3): 1284-1294, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650662

RESUMO

The cancer microenvironment exhibits local acidosis compared with the surrounding normal tissue. Many reports have shown that acidosis accelerates the invasiveness and metastasis of cancer, yet the underlying molecular mechanisms remain unclear. In the present study, we focused on acid-induced functional changes through acid receptors in breast cancer cells. Acidic treatment induced interleukin (IL)-8 expression in MDA-MB-231 cells and promoted cell migration and invasion. The acidic microenvironment elevated matrix metalloproteinase (MMP)-2 and MMP-9 activity, and addition of IL-8 had similar effects. However, inhibition of IL-8 suppressed the acid-induced migration and invasion of MDA-MB-231 cells. MDA-MB-231 cells express various acid receptors including ion channels and G protein-coupled receptors. Interestingly, acidic stimulation increased the expression of acid-sensing ion channel 1 (ASIC1), and acid-induced IL-8 was significantly decreased by ASIC1 knockdown. Moreover, phosphorylation of nuclear factor (NF)-κB was induced by acidic treatment, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that IL-8 induction by an acidic microenvironment promotes breast cancer development and that ASIC1 might be a novel therapeutic target for breast cancer metastasis.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Neoplasias da Mama/patologia , Interleucina-8/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microambiente Tumoral , Canais Iônicos Sensíveis a Ácido/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Interleucina-8/antagonistas & inibidores , Interleucina-8/genética , Fosforilação/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Microambiente Tumoral/efeitos dos fármacos
2.
J Colloid Interface Sci ; 356(2): 798-802, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21295785

RESUMO

Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA