Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 18(23): 2317-2322, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28924980

RESUMO

The diterpene pleuromutilin is a ribosome-targeting antibiotic isolated from basidiomycete fungi, such as Clitopilus pseudo-pinsitus. The functional characterization of all biosynthetic enzymes involved in pleuromutilin biosynthesis is reported and a biosynthetic pathway proposed. In vitro enzymatic reactions and mutational analysis revealed that a labdane-related diterpene synthase, Ple3, catalyzed two rounds of cyclization from geranylgeranyl diphosphate to premutilin possessing a characteristic 5-6-8-tricyclic carbon skeleton. Biotransformation experiments utilizing Aspergillus oryzae transformants possessing modification enzyme genes allowed the biosynthetic pathway from premutilin to pleuromutilin to be proposed. The present study sets the stage for the enzymatic synthesis of natural products isolated from basidiomycete fungi, which are a prolific source of structurally diverse and biologically active terpenoids.


Assuntos
Basidiomycota/genética , Diterpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Aspergillus oryzae/metabolismo , Basidiomycota/enzimologia , Vias Biossintéticas/genética , Ciclização , Diterpenos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Plasmídeos/genética , Plasmídeos/metabolismo , Compostos Policíclicos , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Pleuromutilinas
2.
Biosci Microbiota Food Health ; 43(3): 250-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966055

RESUMO

Kimoto-type Japanese rice wine (sake) has a wide variety of flavors, as the predominant microbes, including lactic acid bacteria (LAB) and nitrate-reducing bacteria, that spontaneously proliferate in the fermentation starter vary depending on the brewery. In this study, we traced the microbiota in four lots of starters manufactured in a newly established brewery and evaluated the lot-to-lot variation and characteristics of the microbiota in the brewery. The results of a 16S ribosomal RNA amplicon analysis showed that the starters brewed in the second brewing year had a more diverse microbiota than those in the first brewing year. Among the LAB predominated at the middle production stage, lactococci, including Leuconostoc spp., were detected in all the lots, while lactobacilli predominated for the first time in the second year. These results suggest that repeated brewing increased microbial diversity and altered the microbial transition pattern in the kimoto-style fermentation starters. Phylogenetic analyses for the LAB isolates from each starter identified Leuconostoc suionicum, Leuconostoc citreum, and Leuconostoc mesenteroides as predominant lactococci as well as a unique lactobacillus in place of Latilactobacillus sakei. We also found that a rice koji-derived Staphylococcus gallinarum with nitrate-reducing activity was generally predominant during the early production stage, suggesting that there was a case in which staphylococci played a role in nitrite production in the starters. These findings are expected to contribute to the understanding of the diversity of microbiota in kimoto-type sake brewing and enable control of the microbiota for consistent sake quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA