Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 17(1): 29-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877855

RESUMO

The plastic co-deformation behavior at the homophase interfaces between the hard nanotwinned grain inclusions and the soft recrystallized matrix grains in a duplex-microstructured AISI 316L austenitic stainless steel is examined through the analysis of long-range orientation gradients within the matrix grains by electron backscatter diffraction and transmission electron microcopy. Our analysis reveals that the mechanical accommodation of homophase interfaces until a macroscopic strain of 22% is realized within a small area of soft grains (about four grains) adjacent to the homophase interface. The activation of deformation twinning in the first two grain layers results in the occurrence of a 'hump' in the orientation gradient profile. We ascribe this effect to the role of deformation twinning on the generation of geometrically necessary dislocations. The smooth profile of the orientation gradient amplitude within the first 10 grain layers indicates a gradual plastic accommodation of the homophase interfaces upon straining. As a consequence, damage nucleation at such interfaces is impeded, resulting in an enhanced ductility of the single phase duplex-microstructured steel.

2.
Science ; 379(6628): 168-173, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634172

RESUMO

Mechanically strong and ductile load-carrying materials are needed in all sectors, from transportation to lightweight design to safe infrastructure. Yet, a grand challenge is to unify both features in one material. We show that a plain medium-manganese steel can be processed to have a tensile strength >2.2 gigapascals at a uniform elongation >20%. This requires a combination of multiple transversal forging, cryogenic treatment, and tempering steps. A hierarchical microstructure that consists of laminated and twofold topologically aligned martensite with finely dispersed retained austenite simultaneously activates multiple micromechanisms to strengthen and ductilize the material. The dislocation slip in the well-organized martensite and the gradual deformation-stimulated phase transformation synergistically produce the high ductility. Our nanostructure design strategy produces 2 gigapascal-strength and yet ductile steels that have attractive composition and the potential to be produced at large industrial scales.

3.
Adv Mater ; 33(5): e2006853, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33354774

RESUMO

Pinning-type magnets with high coercivity at high temperatures are at the core of thriving clean-energy technologies. Among these, Sm2 Co17 -based magnets are excellent candidates owing to their high-temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20-30% of the theoretical limits. Here, the roles of the grain-interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto-structural characterization and atomic-scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization-switching paradigm of pinning-type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA