Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(39): 24562-24569, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193851

RESUMO

The identification of polymorphs in organic semiconductors allows for establishing structure-property relationships and gaining understanding of microscopic charge transport physics. Thin films of 2,7-bis(octyloxy)[1]benzothieno[3,2-b]-benzothiophene (C8O-BTBT-OC8) exhibit a substrate-induced phase (SIP) that differs from the bulk structure, with important implications for the electrical performance in organic field effect transistors (OFETs). Here we combine grazing incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) to study how temperature affects the morphology and structure of C8O-BTBT-OC8 films grown by physical vapor deposition on SiO2. We report a structural transition for C8O-BTBT-OC8 films, from the SIP encountered at room temperature (RT) to a high temperature phase (HTP) when the films are annealed at a temperature T ≥ 90 °C. In this HTP structure, the molecules are packed with a tilt angle (≈39° respect to the surface normal) and an enlarged in-plane unit cell. Although the structural transition is reversible on cooling at RT, AFM reveals that molecular layers at the SiO2 interface can remain with the HTP structure, buried under the film ordered in the SIP. For annealing temperatures close to 150 °C, dewetting occurs leading to a more complex morphological and structural scenario upon cooling, with coexistence of different molecular tilts. Because the molecular packing at the interface has direct impact in the charge carrier mobility of OFETs, identifying the different polymorphs of a material in the thin film form and determining their stability at the interfaces are key factors for device optimization.

2.
Chem Mater ; 36(1): 585-595, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222937

RESUMO

Understanding structure and polymorphism is relevant for any organic device optimization, and it is of particular relevance in 7-decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) since high carrier mobility in Ph-BTBT-10 thin films has been linked to the structural transformation from the metastable thin-film phase to the thermodynamically stable bilayer structure via thermal annealing. We combine here a systematic nanoscale morphological analysis with local Kelvin probe force microcopy (KPFM) that demonstrates the formation of a polar polymorph in thin films as an intermediate structure for thicknesses lower than 20 nm. The polar structure develops with thickness a variable amount of structural defects in the form of individual flipped molecules (point defects) or sizable polar domains, and evolves toward the reported nonpolar thin-film phase. The direct experimental evidence is supported by electronic structure density functional theory calculations. The structure of the film has dramatic effects on the electronic properties, leading to a decrease in the film work function (by up to 1 eV) and a considerable broadening of the occupied molecular orbitals, attributed to electrostatic disorder. From an advanced characterization point of view, KPFM stands out as a valuable tool for evaluating electrostatic disorder and the conceivable emergence of polar polymorphs in organic thin films. The emergence of polar assemblies introduces a critical consideration for other asymmetric BTBT derivatives, which may be pivotal to understanding the structure-property relationships in organic field-effect transistors (OFETs). A precise determination of any polar assemblies close to the dielectric interface is critical for the judicious design and upgrading of high-performance OFETs.

3.
ACS Appl Energy Mater ; 7(3): 874-884, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362252

RESUMO

Recent developments in Sb2Se3 van der Waals material as an absorber candidate for thin film photovoltaic applications have demonstrated the importance of surface management for improving the conversion efficiency of this technology. Sb2Se3 thin films' versatility in delivering good efficiencies in both superstrate and substrate configurations, coupled with a compatibility with various low-temperature deposition techniques (below 500 °C and often below 350 °C), makes them highly attractive for advanced photovoltaic applications. This study presents a comparative analysis of the most effective chemical etchings developed for related thin film chalcogenide technologies to identify and understand the most appropriate surface chemical treatments for Sb2Se3 in substrate configuration, synthesized using a sequential process at very low temperatures (320 °C). Eight different chemical etchings were tested and investigated, and the results show that only KCN-based solutions lead to an improvement in the solar cell's performance, primarily due to an increase in the fill factor. Surface analysis of the samples shows that KCN etching produces very Sb-rich surfaces that do not affect the properties of the bulk. It is proposed that this Sb-rich interface inverts the surface polarity, creating a "buried junction" with CdS, thereby explaining the improvement of the fill factor of the devices, as confirmed by device modeling. The results of this study underscore the importance of surface management in low-temperature synthesized Sb2Se3 absorbers, where Sb-rich interfaces are crucial for achieving high-efficiency devices. This research contributes to ongoing efforts to improve the performance of Sb2Se3 thin film photovoltaic technology and could pave the way for the development of more efficient solar cells with optimized interfaces.

4.
J Mater Chem A Mater ; 11(33): 17616-17627, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38013931

RESUMO

Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb2(S,Se)3, such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of Sb2Se3 thin films at pressure above 1 atm. It is shown that by increasing the annealing temperature and pressure, the height and density of the micro-columnar structures grows monotonically, resulting in SbSeI single-crystal columns up to 30 µm, and tuneable morphology. In addition, solar cell prototypes with substrate configuration have shown remarkable Voc values above 550 mV and 1.8 eV bandgap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA