RESUMO
MOTIVATION: Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges. RESULTS: We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family. AVAILABILITY AND IMPLEMENTATION: The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.
Assuntos
Redes Neurais de Computação , Ligação Proteica , Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Software , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados de ProteínasRESUMO
BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is a rapidly progressing infectious disease with a high fatality rate caused by a novel bunyavirus (SFTSV). The role of lipids in viral infections is well-documented; however, the specific alterations in lipid metabolism during SFTSV infection remain elusive. This study aims to elucidate the lipid metabolic dysregulations in the early stages of SFTS patients. METHODS: This study prospectively collected peripheral blood sera from 11 critical SFTS patients, 37 mild SFTS patients, and 23 healthy controls during the early stages of infection for lipidomics analysis. A systematic bioinformatics analysis was conducted from three aspects integrating lipid differential expressions, lipid differential correlations, and lipid-clinical indices correlations to reveal the serum lipid metabolic dysregulation in SFTSV-infected individuals. RESULTS: Our findings reveal significant lipid metabolic dysregulation in SFTS patients. Specifically, compared to healthy controls, SFTS patients exhibited three distinct modes of lipid differential expression: increased levels of lipids including phosphatidylserine (PS), hexosylceramide (HexCer), and triglycerides (TG); decreased levels of lipids including lysophosphatidylcholine (LPC), acylcarnitine (AcCa), and cholesterol esters (ChE); and lipids showing "dual changes" including phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Finally, based on lipid metabolic pathways and literature analysis, we systematically elucidated the potential mechanisms underlying lipid metabolic dysregulation in the early stage of SFTSV infection. CONCLUSIONS: Our study presents the first global serum lipidome profile and reveals the lipid metabolic dysregulation patterns in the early stage of SFTSV infection. These findings provide a new basis for the diagnosis, treatment, and further investigation of the disease.
Assuntos
Metabolismo dos Lipídeos , Lipidômica , Febre Grave com Síndrome de Trombocitopenia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Febre Grave com Síndrome de Trombocitopenia/sangue , Idoso , Metabolismo dos Lipídeos/fisiologia , Estudos Prospectivos , Lipídeos/sangue , Adulto , Phlebovirus , Estudos de Casos e ControlesRESUMO
Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5⯵M concentrations of MC-LR for 48â¯h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1⯵M concentrations with the highest density at 0.1⯵M concentration. Treatment with 0.1⯵M MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100⯵g/L) through drinking water for 16 weeks. Pathological observations revealed that 100⯵g/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.
Assuntos
Astrócitos , Proliferação de Células , Via de Sinalização Hippo , Toxinas Marinhas , Microcistinas , Transdução de Sinais , Microcistinas/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Receptores ErbB/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genéticaRESUMO
Rhizopus oryzae lipase (ROL) is one of the most important enzymes used in the food, biofuel, and pharmaceutical industries. However, the highly demanding conditions of industrial processes can reduce its stability and activity. To seek a feasible method to improve both the catalytic activity and the thermostability of this lipase, first, the structure of ROL was divided into catalytic and noncatalytic regions by identifying critical amino acids in the crevice-like binding pocket. Second, a mutant screening library aimed at improvement of ROL catalytic performance by virtual saturation mutagenesis of residues in the catalytic region was constructed based on Rosetta's Cartesian_ddg protocol. A double mutant, E265V/S267W (with an E-to-V change at residue 265 and an S-to-W change at residue 267), with markedly improved catalytic activity toward diverse chain-length fatty acid esters was identified. Then, computational design of disulfide bonds was conducted for the noncatalytic amino acids of E265V/S267W, and two potential disulfide bonds, S61C-S115C and E190C-E238C, were identified as candidates. Experimental data validated that the variant E265V/S267W/S61C-S115C/E190C-E238C had superior stability, with an increase of 8.5°C in the melting temperature and a half-life of 31.7 min at 60°C, 4.2-fold longer than that of the wild-type enzyme. Moreover, the variant improved the lipase activity toward five 4-nitrophenyl esters by 1.5 to 3.8 times, exhibiting a potential to modify the catalytic efficiency. IMPORTANCE Rhizopus oryzae lipase (ROL) is very attractive in biotechnology and industry as a safe and environmentally friendly biocatalyst. Functional expression of ROL in Escherichia coli facilitates effective high-throughput screening for positive variants. This work highlights a method to improve both selectivity and thermostability based on a combination of virtual saturation mutagenesis in the substrate pocket and disulfide bond prediction in the noncatalytic region. Using the method, ROL thermostability and activity to diverse 4-nitrophenyl esters could be substantially improved. The strategy of rational introduction of multiple mutations in different functional domains of the enzyme is a great prospect in the modification of biocatalysts.
Assuntos
Lipase , Rhizopus oryzae , Rhizopus oryzae/metabolismo , Lipase/metabolismo , Rhizopus/genética , Rhizopus/metabolismo , Mutagênese , Aminoácidos/genética , Dissulfetos/química , Estabilidade EnzimáticaRESUMO
The search for and characterization of new lipases with excellent properties has always been urgent and is of great importance to meet industrial needs. In this study, a new lipase, lipB, from Pseudomonas fluorescens SBW25, belonging to the lipase subfamily I.3, was cloned and expressed in Bacillus subtilis WB800N. Enzymatic properties studies of recombinant LipB found that it exhibited the highest activity towards p-nitrophenyl caprylate at 40 °C and pH 8.0, retaining 73% of its original activity after incubation at 70 °C for 6 h. In addition, Ca2+, Mg2+, and Ba2+ strongly enhanced the activity of LipB, while Cu2+, Zn2+, Mn2+, and CTAB showed an inhibiting effect. The LipB also displayed noticeable tolerance to organic solvents, especially acetonitrile, isopropanol, acetone, and DMSO. Moreover, LipB was applied to the enrichment of polyunsaturated fatty acids from fish oil. After hydrolyzing for 24 h, it could increase the contents of polyunsaturated fatty acids from 43.16% to 72.18%, consisting of 5.75% eicosapentaenoic acid, 19.57% docosapentaenoic acid, and 46.86% docosahexaenoic acid, respectively. The properties of LipB render it great potential in industrial applications, especially in health food production.
Assuntos
Lipase , Pseudomonas fluorescens , Lipase/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Ácidos Graxos Insaturados , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Estabilidade EnzimáticaRESUMO
Innovations in biocatalysts provide great prospects for intolerant environments or novel reactions. Due to the limited catalytic capacity and the long-term and labor-intensive characteristics of mining enzymes with the desired functions, de novo enzyme design was developed to obtain industrial application candidates in a rapid and convenient way. Here, based on the catalytic mechanisms and the known structures of proteins, we proposed a computational protein design strategy combining de novo enzyme design and laboratory-directed evolution. Starting with the theozyme constructed using a quantum-mechanical approach, the theoretical enzyme-skeleton combinations were assembled and optimized via the Rosetta "inside-out" protocol. A small number of designed sequences were experimentally screened using SDS-PAGE, mass spectrometry and a qualitative activity assay in which the designed enzyme 1a8uD1 exhibited a measurable hydrolysis activity of 24.25 ± 0.57 U/g towards p-nitrophenyl octanoate. To improve the activity of the designed enzyme, molecular dynamics simulations and the RosettaDesign application were utilized to further optimize the substrate binding mode and amino acid sequence, thus keeping the residues of theozyme intact. The redesigned lipase 1a8uD1-M8 displayed enhanced hydrolysis activity towards p-nitrophenyl octanoate-3.34 times higher than that of 1a8uD1. Meanwhile, the natural skeleton protein (PDB entry 1a8u) did not display any hydrolysis activity, confirming that the hydrolysis abilities of the designed 1a8uD1 and the redesigned 1a8uD1-M8 were devised from scratch. More importantly, the designed 1a8uD1-M8 was also able to hydrolyze the natural middle-chained substrate (glycerol trioctanoate), for which the activity was 27.67 ± 0.69 U/g. This study indicates that the strategy employed here has great potential to generate novel enzymes exhibiting the desired reactions.
Assuntos
Caprilatos , Lipase , Lipase/metabolismo , Hidrólise , Proteínas , Ácidos Graxos , Especificidade por Substrato , ÉsteresRESUMO
BACKGROUND: Lactose malabsorption occurs in around 68% of the world's population, causing lactose intolerance (LI) symptoms, such as abdominal pain, bloating, and diarrhea. To alleviate LI, previous studies have mainly focused on strengthening intestinal ß-galactosidase activity while neglecting the inconspicuous drop in the colon pH caused by the fermentation of non-hydrolyzed lactose by the gut microbes. A drop in colon pH will reduce the intestinal ß-galactosidase activity and influence intestinal homeostasis. RESULTS: Here, we synthesized a tri-stable-switch circuit equipped with high ß-galactosidase activity and pH rescue ability. This circuit can switch in functionality between the expression of ß-galactosidase and expression of L-lactate dehydrogenase in response to an intestinal lactose signal and intestinal pH signal, respectively. We confirmed that the circuit functionality was efficient in bacterial cultures at a range of pH levels, and in preventing a drop in pH and ß-galactosidase activity after lactose administration to mice. An impact of the circuit on gut microbiota composition was also indicated. CONCLUSIONS: Due to its ability to flexibly adapt to environmental variation, in particular to stabilize colon pH and maintain ß-galactosidase activity after lactose influx, the tri-stable-switch circuit can serve as a promising prototype for the relief of lactose intolerance.
Assuntos
Intolerância à Lactose , Animais , Fermentação , Microbioma Gastrointestinal , Lactose , Intolerância à Lactose/genética , Camundongos , beta-Galactosidase/genética , beta-Galactosidase/metabolismoRESUMO
Optogenetics has the advantages of a fast response time, reversibility, and high spatial and temporal resolution, which make it desirable in the metabolic engineering of chassis cells. In this study, a light-induced expression system of Yarrowia lipolytica was constructed, which successfully achieved the synthesis and functional verification of Bleomycin resistance protein (BleoR). The core of the blue light-induced system, the light-responsive element (TF), is constructed based on the blue photosensitive protein EL222 and the transcription activator VP16. The results show that the light-induced sensor based on TF, upstream activation sequence (C120)5, and minimal promoter CYC102 can respond to blue light and initiate the expression of GFPMut3 report gene. With four copies of the responsive promoter and reporter gene assembled, they can produce a 128.5-fold higher fluorescent signal than that under dark conditions after 8 h of induction. The effects of light dose and periodicity on this system were investigated, which proved that the system has good spatial and temporal controllability. On this basis, the light-controlled system was used for the synthesis of BleoR to realize the expression and verification of functional protein. These results demonstrated that this system has the potential for the transcriptional regulation of target genes, construction of large-scale synthetic networks, and overproduction of the desired product.
Assuntos
Yarrowia , Genes Reporter , Engenharia Metabólica/métodos , Optogenética/métodos , Regiões Promotoras Genéticas , Yarrowia/genética , Yarrowia/metabolismoRESUMO
Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe3O4-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe3O4 nanoparticles. The effective reflection loss (RL ≤ -10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe3O4 nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm2 at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials.
Assuntos
Micro-Ondas , Poliuretanos , Estudos Prospectivos , PolímerosRESUMO
Yarrowia lipolytica is progressively being employed as a workhouse for recombinant protein expression. Here, we expanded the molecular toolbox by engineering the enolase promoter (pENO) and developed a new self-excisable vector, and based on this, a combined strategy was employed to enhance the expression of Thermomyces lanuginosus lipase (TLL) in Y. lipolytica. The strength of 11 truncated enolase promoters of different length was first identified using eGFP as a reporter. Seven of the truncated promoters were selected to examine their ability for driving TLL expression. Then, a series of enolase promoters with higher activities were developed by upstream fusing of different copies of UAS1B, and the recombinant strain Po1f/hp16e100-tll harboring the optimal promoter hp16e100 obtained a TLL activity of 447 U/mL. Additionally, a new self-excisable vector was developed based on a Cre/loxP recombination system, which achieved efficient markerless integration in Y. lipolytica. Subsequently, strains harboring one to four copies of the tll gene were constructed using this tool, with the three-copy strain Po1f/3tll showing the highest activity of 579 U/mL. The activity of Po1f/3tll was then increased to 720 U/mL by optimizing the shaking flask fermentation parameters. Moreover, the folding-related proteins Hac1, Pdi, and Kar2 were employed to further enhance TLL expression, and the TLL activity of the optimal recombinant strain Po1f/3tll-hac1-pdi-kar2 reached 1197 U/mL. By using this combined strategy, TLL activity was enhanced by approximately 39.9-fold compared to the initial strain. Thus, the new vector and the combined strategy could be a useful tool to engineer Y. lipolytica for high-level expression of heterologous protein.
Assuntos
Eurotiales , Yarrowia , Eurotiales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Regiões Promotoras GenéticasRESUMO
In nature, DNA is ubiquitous, existing not only inside but also outside of the cells of organisms. Intracellular DNA (iDNA) plays an essential role in different stages of biological growth, and it is defined as the carrier of genetic information. In addition, extracellular DNA (eDNA) is not enclosed in living cells, accounting for a large proportion of total DNA in the environment. Both the lysis-dependent and lysis-independent pathways are involved in eDNA release, and the released DNA has diverse environmental functions. This review provides an insight into the origin as well as the multiple ecological functions of eDNA. Furthermore, the main research advancements of eDNA in the various ecological environments and the various model microorganisms are summarized. Furthermore, the major methods for eDNA extraction and quantification are evaluated.
Assuntos
DNA , DNA Bacteriano/genética , DNA/genéticaRESUMO
One hotspot of present community ecology is to uncover the mechanisms of community succession. In this study, two popular concepts, niche-neutrality dynamic balancing and co-occurrence network analysis, were integrated to investigate the dispersal dynamics of microbial communities in a freshwater river continuum in subtropical China. Results showed that when habitat conditions were mild and appropriate, such as in the clean upstream river, free of heavy pollution or long-lasting extreme disturbances, stochastic processes could increase species diversities, and organize communities into relatively loosely linked and stable networks with higher modularity and more modules. However, when conditions became degraded under heavy pollution, the influence of neutrality diminished, and niche-based selection imposed more constraints on communities and guided the assembling processes in certain directions: depleting species richness, strengthening interspecies connections and breaking boundaries of modules. Consequently, communities became more sensitive to fluctuations so as to deal with the harsh conditions efficiently. Another interesting finding was that, both as keystone taxa of communities, module hubs were mostly neutrally distributed generalists with high abundances, and were beneficial to many related operational taxonomic units. In contrast, connectors were less abundant and their distributions were more subjected to the environments. Therefore, connectors were probably responsible for the information transmission between microbial communities and environments, as well as between different modules, and thus could restrict the dispersal of microbes and guide the direction of community assembly.
Assuntos
Microbiota , China , Ecologia , Água Doce , Microbiota/genética , RiosRESUMO
This article describes the successful synthesis of a novel nanocomposite of superparamagnetic multi-walled nanotubes with a four-arm polyethylene glycol amine polymer (mMWCNTs@4-arm-PEG-NH2). This composite was then employed as a support for the covalent co-immobilization of Rhizopus oryzae and Candida rugosa lipases under appropriate conditions. The co-immobilized lipases (CIL-mMWCNTs@4-arm-PEG-NH2) exhibited maximum specific activity of 99.626U/mg protein, which was 34.5-fold superior to that of free ROL, and its thermal stability was greatly improved. Most significantly, CIL-mMWCNTs@4-arm-PEG-NH2 was used to prepare biodiesel from waste cooking oil under ultrasound conditions, and within 120 min, the biodiesel conversion rate reached 97.64%. This was due to the synergy effect between ROL and CRL and the ultrasound-assisted enzymatic process, resulting in an increased biodiesel yield in a short reaction time. Moreover, after ten reuse cycles, the co-immobilized lipases still retained a biodiesel yield of over 78.55%, exhibiting excellent operational stability that is attractive for practical applications. Consequently, the combined use of a novel designed carrier, the co-immobilized lipases with synergy effect, and the ultrasound-assisted enzymatic reaction exhibited potential prospects for future applications in biodiesel production and various industrial applications.
Assuntos
Aminas/química , Biocombustíveis/análise , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Nanopartículas de Magnetita/química , Nanocompostos/química , Polietilenoglicóis/química , Candida/enzimologia , Enzimas Imobilizadas/química , Esterificação , Lipase/química , Rhizopus oryzae/enzimologiaRESUMO
The unconventional yeast Yarrowia lipolytica is extensively applied in bioproduction fields owing to its excellent metabolite and protein production ability. Nonetheless, utilization of this promising host is still restricted by the limited availability of precise and effective gene integration tools. In this study, a novel and efficient genetic tool was developed for targeted, repeated, and markerless gene integration based on Cre/lox site-specific recombination system. The developed tool required only a single selection marker and could completely excise the unnecessary sequences. A total of three plasmids were created and seven rounds of marker-free gene integration were examined in Y. lipolytica. All the integration efficiencies remained above 90%, and analysis of the protein production and growth characteristics of the engineered strains confirmed that genome modification via the novel genetic tool was feasible. Further work also confirmed that the genetic tool was effective for the integration of other genes, loci, and strains. Thus, this study significantly promotes the application of the Cre/lox system and presents a powerful tool for genome engineering in Y. lipolytica.
Assuntos
Proteínas Fúngicas/genética , Edição de Genes , Vetores Genéticos , Integrases/metabolismo , Plasmídeos/genética , Yarrowia/genética , Engenharia Genética , Integrases/genética , Recombinação Genética , Yarrowia/crescimento & desenvolvimentoRESUMO
This data-intensive study investigated the delicate balance of niche and neutrality underlying microbial communities in freshwater ecosystems through comprehensive application of high-throughput sequencing, species abundance distribution (SAD), and the neutral community model (NCM), combined with species diversity and phylogenetic measures, which unite the traditional and microbial ecology. On the genus level, 45.10% and 41.18% of the water samples could be explained by the log-normal and Volkov model respectively, among which 31.37% could fit both models. Meanwhile, 55.56% of the sediment samples could be depicted by the log-normal model, and Volkov-fitted samples comprised only 13.33%. Besides, operational taxonomic units (OTUs) from water samples fit Sloan's neutral model significantly better than those in sediment. Therefore, it was concluded that deterministic processes played a great role in both water and sediment ecosystems, whereas neutrality was much more involved in water assemblages than in non-fluidic sediment ecosystems. Secondly, log-normal fitted samples had lower phylogenetic species variability (PSV) than Volkov-fitted ones, indicating that niche-based communities were more phylogenetically clustered than neutrally assembled counterparts. Additionally, further testing showed that the relative richness of rare species was vital to SAD modeling, either niche-based or neutral, and communities containing fewer rare species were more easily captured by theoretical SAD models.
Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Ecossistema , Microbiota , Rios/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , China , Modelos Biológicos , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análiseRESUMO
Candida tropicalis is a pathogenic fungus that can cause opportunistic infections in humans. The ability of Candida species to transition between yeast and filamentous growth forms is essential to their ability to undergo environmental adaptation and to maintain virulence. In other fungal species, such as Candida albicans, N-acetylglucosamine (GlcNAc) can induce filamentous growth, whereas it suppresses such growth in C. tropicalis. In the present study, we found that knocking out the GlcNA-specific transporter gene NGT1 was sufficient to enhance C. tropicalis filamentous growth on Lee's plus GlcNAc medium. This suggests that GlcNAc uptake into C. tropicalis cells is essential to the disruption of mycelial growth. As such, we further studied how GlcNAc catabolism-related genes were able to influence C. tropicalis filamentation. We found that HXK1 overexpression drove filamentous growth on Lee's media containing glucose and GlcNAc, whereas the deletion of the same gene disrupted this filamentous growth. Interestingly, the deletion of the DAC1 or NAG1 genes impaired C. tropicalis growth on Lee's plus GlcNAc plates. Overall, these results indicate that HXK1 can serve as a positive regulator of filamentous growth, with excess GlcNAc-6-PO4 accumulation being toxic to C. tropicalis. These findings may highlight novel therapeutic targets worthy of future investigation.
Assuntos
Acetilglucosamina/metabolismo , Candida tropicalis/fisiologia , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Deleção de Genes , Glucose/metabolismo , Humanos , Modelos Biológicos , VirulênciaRESUMO
Esterases are a large family of enzymes with wide applications in the industry. However, all esterases originated from natural sources, limiting their use in harsh environments or newly- emerged reactions. In this study, we designed a new esterase to develop a new protocol to satisfy the needs for better biocatalysts. The ideal spatial conformation of the serine catalytic triad and the oxygen anion hole at the substrate-binding site was constructed by quantum mechanical calculation. The catalytic triad and oxygen anion holes were then embedded in the protein scaffold using the new enzyme protocol in Rosetta 3. The design results were subsequently evaluated, and optimized designs were used for expression and purification. The designed esterase had significant lytic activities towards p-nitrophenyl acetate, which was confirmed by point mutations. Thus, this study developed a new protocol to obtain novel enzymes that may be useful in unforgiving environments or novel reactions.
Assuntos
Esterases/química , Esterases/metabolismo , Nitrofenóis/metabolismo , Engenharia de Proteínas/métodos , Domínio Catalítico , Bases de Dados de Proteínas , Esterases/genética , Hidrólise , Mutação , Oxigênio/química , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
As an alternative to in vitro lipase dependent biotransformation and to traditional assembly of pathways in cytoplasm, the present study focused on targeting lipase dependent pathways to a subcellular compartment lipid body (LB), in combination with compartmentalization of associated pathways in other lipid relevant organelles including endoplasmic reticulum (ER) and peroxisome for efficient in vivo biosynthesis of fatty acid methyl esters (FAMEs) and hydrocarbons, in the context of improving Yarrowia lipolytica lipid pool. Through knock in and knock out of key genes involved in triacylglycerols (TAGs) biosynthesis and degradation, the TAGs content was increased to 51.5%, from 7.2% in parent strain. Targeting lipase dependent pathway to LB gave a 10-fold higher FAMEs titer (1028.0â¯mg/L) compared to cytosolic pathway (102.8â¯mg/L). Furthermore, simultaneously targeting lipase dependent pathway to LB, ER and peroxisome gave rise to the highest FAMEs titer (1644.8â¯mg/L). The subcellular compartment engineering strategy was extended to other lipase dependent pathways for fatty alkene and alkane biosynthesis, which resulted in a 14-fold titer enhancement compared to traditional cytosolic pathways. We developed yeast subcellular cell factories by directing lipase dependent pathways towards the TAGs storage organelle LB for efficient biosynthesis of TAG derived chemicals for the first time. The successful exploration of targeting metabolic pathways towards LB centered organelles is expected to promote subcellular compartment engineering for other lipid derived product biosynthesis.
Assuntos
Proteínas Fúngicas , Lipase , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Triglicerídeos , Yarrowia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Lipase/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Triglicerídeos/biossíntese , Triglicerídeos/genética , Yarrowia/enzimologia , Yarrowia/genéticaRESUMO
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.
Assuntos
Enzimas Imobilizadas/química , Biocatálise , Cerâmica/química , Estabilidade Enzimática , Grafite/química , Nanoestruturas/química , Polímeros/química , Propriedades de SuperfícieRESUMO
In this study, we designed an improved method to construct gene-deficient strain in non-conventional yeast Pichia pastoris. This method achieved high efficiency of gene deletion without disruption of NHEJ-related genes. The disruption efficiency of Och1 reached about 80%. This simple method will be a new useful molecular tool for P. pastoris.