Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
New Phytol ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279036

RESUMO

Bark serves crucial roles in safeguarding trees physically and chemically, while also contributing to nutrient cycling and carbon sequestration. Despite its importance, the broader biogeographical patterns and the potential factors influencing bark C : N : P stoichiometry in forest ecosystems remain largely unknown. In this study, we compiled a comprehensive dataset comprising carbon (C), nitrogen (N), and phosphorus (P) concentrations in bark with 1240 records from 550 diverse forest sites to systematically analyze the large-scale patterns and the factors controlling bark C : N : P stoichiometry. The geometric means of bark C, N, and P concentrations were found to be 493.17 ± 1.75, 3.91 ± 0.09, and 0.2 ± 0.01 mg g-1, respectively. Correspondingly, the C : N, C : P, and N : P mass ratios were 135.51 ± 8.11, 3313.19 ± 210.16, and 19.16 ± 0.6, respectively. Bark C : N : P stoichiometry exhibited conspicuous latitudinal trends, with the exception of N : P ratios. These patterns were primarily shaped by the significant impacts of climate, soil conditions, and plant functional groups. However, the impact of evolutionary history in shaping bark C : N : P stoichiometry outweigh climate, soil, and plant functional group, aligning with the biogeochemical niche (BN) hypothesis. These finding enhance our understanding of the spatial distribution of bark nutrient stoichiometry and have important implications for modeling of global forest ecosystem nutrient cycles in a changing environment.

2.
New Phytol ; 241(3): 1088-1099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991013

RESUMO

Stoichiometric rules may explain the allometric scaling among biological traits and body size, a fundamental law of nature. However, testing the scaling of elemental stoichiometry and growth to size over the course of plant ontogeny is challenging. Here, we used a fast-growing bamboo species to examine how the concentrations and contents of carbon (C), nitrogen (N) and phosphorus (P), relative growth rate (G), and nutrient productivity scale with whole-plant mass (M) at the culm elongation and maturation stages. The whole-plant C content vs M and N content vs P content scaled isometrically, and the N or P content vs M scaled as a general 3/4 power function across both growth stages. The scaling exponents of G vs M and N (and P) productivity in newly grown mass vs M relationships across the whole growth stages decreased as a -1 power function. These findings reveal the previously undocumented generality of stoichiometric allometries over the course of plant ontogeny and provide new insights for understanding the origin of ubiquitous quarter-power scaling laws in the biosphere.


Assuntos
Fósforo , Plantas , Desenvolvimento Vegetal , Tamanho Corporal , Nitrogênio
3.
New Phytol ; 243(2): 607-619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764134

RESUMO

Leaf phenology variations within plant communities shape community assemblages and influence ecosystem properties and services. However, questions remain regarding quantification, drivers, and productivity impacts of intra-site leaf phenological diversity. With a 50-ha subtropical forest plot in China's Heishiding Provincial Nature Reserve (part of the global ForestGEO network) as a testbed, we gathered a unique dataset combining ground-derived abiotic (topography, soil) and biotic (taxonomic diversity, functional diversity, functional traits) factors. We investigated drivers underlying leaf phenological diversity extracted from high-resolution PlanetScope data, and its influence on aboveground biomass (AGB) using structural equation modeling (SEM). Our results reveal considerable fine-scale leaf phenological diversity across the subtropical forest landscape. This diversity is directly and indirectly influenced by abiotic and biotic factors (e.g. slope, soil, traits, taxonomic diversity; r2 = 0.43). While a notable bivariate relationship between AGB and leaf phenological diversity was identified (r = -0.24, P < 0.05), this relationship did not hold in SEM analysis after considering interactions with other biotic and abiotic factors (P > 0.05). These findings unveil the underlying mechanism regulating intra-site leaf phenological diversity. While leaf phenology is known to be associated with ecosystem properties, our findings confirm that AGB is primarily influenced by functional trait composition and taxonomic diversity rather than leaf phenological diversity.


Assuntos
Biodiversidade , Florestas , Folhas de Planta , Clima Tropical , Folhas de Planta/fisiologia , Biomassa , Solo , China
4.
New Phytol ; 242(5): 1965-1980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572888

RESUMO

Land surface phenology (LSP), the characterization of plant phenology with satellite data, is essential for understanding the effects of climate change on ecosystem functions. Considerable LSP variation is observed within local landscapes, and the role of biotic factors in regulating such variation remains underexplored. In this study, we selected four National Ecological Observatory Network terrestrial sites with minor topographic relief to investigate how biotic factors regulate intra-site LSP variability. We utilized plant functional type (PFT) maps, functional traits, and LSP data to assess the explanatory power of biotic factors for the start and end of season (SOS and EOS) variability. Our results indicate that PFTs alone explain only 0.8-23.4% of intra-site SOS and EOS variation, whereas including functional traits significantly improves explanatory power, with cross-validation correlations ranging from 0.50 to 0.85. While functional traits exhibited diverse effects on SOS and EOS across different sites, traits related to competitive ability and productivity were important for explaining both SOS and EOS variation at these sites. These findings reveal that plants exhibit diverse phenological responses to comparable environmental conditions, and functional traits significantly contribute to intra-site LSP variability, highlighting the importance of intrinsic biotic properties in regulating plant phenology.


Assuntos
Florestas , Estações do Ano , Característica Quantitativa Herdável
5.
New Phytol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223910

RESUMO

Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems. We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ13C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance ( G w max $$ {G}_{{\mathrm{w}}_{\mathrm{max}}} $$ ) and maximum carboxylation capacity ( V c max $$ {V}_{{\mathrm{c}}_{\mathrm{max}}} $$ ). We found that leaves in cold-temperate forests displayed 'fast' carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, and V c max $$ {V}_{{\mathrm{c}}_{\mathrm{max}}} $$ , as an adaptation to the shorter growing season. However, these leaves exhibited 'slow' hydraulic traits, with larger but fewer stomata and similar G w max $$ {G}_{{\mathrm{w}}_{\mathrm{max}}} $$ , resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE. Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon-water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.

6.
Photosynth Res ; 155(2): 139-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346510

RESUMO

Using steady-state photosynthesis-intercellular CO2 concentration (A-Ci) response curves to obtain the maximum rates of ribulose-1,5-bisphosphate carboxylase oxygenase carboxylation (Vcmax) and electron transport (Jmax) is time-consuming and labour-intensive. Instead, the rapid A-Ci response (RACiR) technique provides a potential, high-efficiency method. However, efficient parameter settings of RACiR technique for evergreen broadleaved species remain unclear. Here, we used Li-COR LI-6800 to obtain the optimum parameter settings of RACiR curves for evergreen broadleaved trees and shrubs. We set 11 groups of CO2 gradients ([CO2]), i.e. R1 (400-1500 ppm), R2 (400-200-800 ppm), R3 (420-20-620 ppm), R4 (420-20-820 ppm), R5 (420-20-1020 ppm), R6 (420-20-1220 ppm), R7 (420-20-1520 ppm), R8 (420-20-1820 ppm), R9 (450-50-650 ppm), R10 (650-50 ppm) and R11 (650-50-650 ppm), and then compared the differences between steady-state A-Ci and RACiR curves. We found that Vcmax and Jmax calculated by steady-state A-Ci and RACiR curves overall showed no significant differences across 11 [CO2] gradients (P > 0.05). For the studied evergreens, the efficiency and accuracy of R2, R3, R4, R9 and R10 were higher than the others. Hence, we recommend that the [CO2] gradients of R2, R3, R4, R9 and R10 could be applied preferentially for measurements when using the RACiR technique to obtain Vcmax and Jmax of evergreen broadleaved species.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/fisiologia , Transporte de Elétrons , Folhas de Planta/fisiologia
7.
J Plant Res ; 136(4): 515-525, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37055608

RESUMO

Nutrient availability significantly regulates plant growth and metabolic functions, but whether and how the long-term exposure of ancestral plants to contrasting nutrient environments influences offspring phenotypic performance (i.e., transgenerational plasticity) remain poorly addressed. Here we conducted experimental manipulations using Arabidopsis thaliana with the ancestral plants grown in different nitrogen (N) and phosphorus (P) availabilities over eleven consecutive generations, and then examined the offspring phenotypic performance under the interactive effects of current and ancestral nutrient environments. We found that current rather than ancestral nutrient environments dominantly explained the variations in offspring plant traits (i.e., flowering time, aboveground biomass and biomass allocation fractions), suggesting the relatively weak transgenerational effects of ancestral N and P availabilities on offspring phenotypes. In contrast, increasing N and P availabilities in the offspring generation remarkably shortened the flowering time, increased the aboveground biomass, and altered biomass allocation fractions differentially among organs. Despite the overall weak transgenerational phenotypic plasticity, under the low nutrient environment, the offspring of ancestral plants from the low nutrient environment had a significantly higher fruit mass fraction than those from the suitable nutrient environment. Taken together, our findings suggest that A. thaliana exhibits a much stronger within- than trans-generational trait plasticity under contrasting nutrient availabilities, and may provide important insights into the understanding of plant adaptation and evolutionary processes under changing nutrient environments.


Assuntos
Arabidopsis , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Fenótipo , Biomassa
8.
J Plant Res ; 135(1): 41-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669087

RESUMO

Above- and belowground biomass allocation is an essential plant functional trait that reflects plant survival strategies and affects belowground carbon pool estimation in grasslands. However, due to the difficulty of distinguishing living and dead roots, estimation of biomass allocation from field-based studies currently show large uncertainties. In addition, the dependence of biomass allocation on plant species, functional type as well as plant density remains poorly addressed. Here, we conducted greenhouse manipulation experiments to study above- and belowground biomass allocation and its density regulation for six common grassland species with different functional types (i.e., C3 vs C4; annuals vs perennials) from temperate China. To explore the density regulation on the biomass allocation, we used five density levels: 25, 100, 225, 400, and 625 plant m-2. We found that mean root to shoot ratio (R/S) values ranged from 0.04 to 0.92 across the six species, much lower than those obtained in previous field studies. We also found much lower R/S values in annuals than in perennials (C. glaucum and S. viridis vs C. squarrosa, L. chinensis, M. sativa and S. grandis) and in C4 plants than in C3 plants (C. squarrosa vs L. chinensis, M. sativa and S. grandis). In addition to S. grandis, plant density had significant effects on the shoot and root biomass fraction and R/S for the other five species. Plant density also affected the allometric relationships between above- and belowground biomass significantly. Our results suggest that R/S values obtained from field investigations may be severely overestimated and that R/S values vary largely across species with different functional types. Our findings provide novel insights into approximating the difficult-to-measure belowground living biomass in grasslands, and highlight that species composition and intraspecific competition will regulate belowground carbon estimation.


Assuntos
Pradaria , Plantas , Biomassa , Carbono , China , Ecossistema , Raízes de Plantas
9.
New Phytol ; 232(1): 134-147, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34165791

RESUMO

Leaf trait relationships are widely used to predict ecosystem function in terrestrial biosphere models (TBMs), in which leaf maximum carboxylation capacity (Vc,max ), an important trait for modelling photosynthesis, can be inferred from other easier-to-measure traits. However, whether trait-Vc,max relationships are robust across different forest types remains unclear. Here we used measurements of leaf traits, including one morphological trait (leaf mass per area), three biochemical traits (leaf water content, area-based leaf nitrogen content, and leaf chlorophyll content), one physiological trait (Vc,max ), as well as leaf reflectance spectra, and explored their relationships within and across three contrasting forest types in China. We found weak and forest type-specific relationships between Vc,max and the four morphological and biochemical traits (R2 ≤ 0.15), indicated by significantly changing slopes and intercepts across forest types. By contrast, reflectance spectroscopy effectively collapsed the differences in the trait-Vc,max relationships across three forest biomes into a single robust model for Vc,max (R2 = 0.77), and also accurately estimated the four traits (R2 = 0.75-0.94). These findings challenge the traditional use of the empirical trait-Vc,max relationships in TBMs for estimating terrestrial plant photosynthesis, but also highlight spectroscopy as an efficient alternative for characterising Vc,max and multitrait variability, with critical insights into ecosystem modelling and functional trait ecology.


Assuntos
Ecossistema , Fotossíntese , Clorofila , Florestas , Nitrogênio , Folhas de Planta , Análise Espectral
10.
Ann Bot ; 123(3): 441-450, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30265279

RESUMO

BACKGROUND AND AIMS: Plant elemental composition is of fundamental importance for plant growth and metabolic functions. However, knowledge of how multi-elemental stoichiometry responds to varying nitrogen (N) and phosphorus (P) availabilities remains limited. METHODS: We conducted experimental manipulations with nine repeat experiments to investigate the effects of N and P supply on the concentrations and variability of six elements, carbon (C), N, P, potassium (K), calcium (Ca) and magnesium (Mg), in leaves of Arabidopsis thaliana. KEY RESULTS: N supply increased the concentrations of N, K and Mg, decreased the concentration of P, but exerted little influence on the concentrations of C and Ca in green leaves. P supply increased the concentrations of P and Ca, decreased the concentration of C, initially increased and then decreased the concentration of K, but showed little influence on the concentrations of N and Mg in green leaves. Multivariate patterns among the concentrations of these six elements in green leaves was influenced by the type of nutrient supply (i.e. N or P). Elemental variability decreased with increasing elemental concentrations in green leaves at the intraspecific level, supporting the Stability of Limiting Elements Hypothesis that was originally proposed from a meta-analysis of pooled data across species or communities. Compared with green leaves, the senesced leaves showed greater variability in C, N, P, K and Mg concentrations but lower variability in Ca concentration. CONCLUSIONS: N and P supplies exerted differential influences on the concentrations of C, N, P, K, Ca and Mg in green leaves. The specific C content should be considered when assessing C cycling under global nutrient changes. Stage-dependent patterns of leaf stoichiometric homeostasis differed among elements with various chemical characteristics. These findings can help to improve our understanding of plant eco-physiological responses and acclimation under global nutrient changes from the stoichiometric perspective of multiple elements.


Assuntos
Arabidopsis/metabolismo , Minerais/metabolismo , Nitrogênio/metabolismo , Nutrientes/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo
11.
Am J Bot ; 106(3): 363-370, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30861100

RESUMO

PREMISE OF THE STUDY: Nutrient resorption is essential for plant nutrient conservation. Large-bodied plants potentially have large nutrient sink pools and high nutrient flux. Whether and how nutrient resorption can be regulated by plant size and biomass allocation are yet unknown. METHODS: Using the herbaceous plant Amaranthus mangostanus in greenhouse experiments for two consecutive years, we measured plant biomass, height, and stem diameter and calculated the root to shoot biomass ratio (R/S ratio) and nutrient resorption efficiency (NuRE) to assess the effects of plant body size and biomass allocation on NuRE. NuRE was calculated as the percentage reduction in leaf nutrient concentration from green leaf to senesced leaf. KEY RESULTS: NuRE increased with plant biomass, height, and stem diameter, suggesting that the individuals with larger bodies, which led to a larger nutrient pool, tended to resorb proportionally more nutrients from the senescing leaves. NuRE decreased with increasing root to shoot ratio, which might have reflected the nutrient acquisition trade-offs between resorption from the senescent leaves and absorption from the soil. Increased root biomass allocation increased the proportion of nutrient acquisition through absorption more than through resorption. CONCLUSIONS: This study presented the first experimental evidence of how NuRE is linked to plant size (indicated by biomass, height, and stem diameter) and biomass allocation, suggesting that nutrient acquisition could be modulated by the size of the nutrient sink pool and its partitioning in plants, which can improve our understanding of a conservation mechanism for plant nutrients. The body size and root to shoot ratio effects might also partly explain previous inconsistent reports on the relationships between environmental nutrient availability and NuRE.


Assuntos
Amaranthus/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Biomassa , Nutrientes/metabolismo
13.
Ann Bot ; 120(6): 937-942, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29028870

RESUMO

BACKGROUND AND AIMS: The nitrogen (N) to phosphorus (P) ratio (N:P) has been widely used as a threshold for identifying nutrient limitations in terrestrial plants; however, the associated reliability has not been well assessed. METHODS: The uncertainty of nutrient limitations caused by the N:P threshold was evaluated using two approaches: fertilization experiments synthesized across multiple ecosystems; and random sampling simulation of the impacts of different nutrient sufficiencies and deficiencies. KEY RESULTS: The fertilization experiment data indicated that the types of nutrient limitation determined via N:P thresholds were partly inconsistent with the growth responses observed under N and P additions, i.e. under N:P thresholds of 14 and 16 (or 10 and 20), 32.5 % (or 16.2 %) of the data were inconsistent between these two. The random sampling simulation suggested that N:P thresholds may indicate N (or P) limitations when leaf N (or P) content is sufficient, whereas these thresholds may not indicate N (or P) limitations when leaf N (or P) content is deficient. The error risks calculated from the sampling simulation presented large fluctuations at small sample sizes and decreased as the thresholds of nutrient content sufficiency (or deficiency) increased (or decreased). The N:P thresholds of 10 and 20 showed lower error risks than the thresholds of 14 and 16. CONCLUSIONS: These findings highlight that canonical N:P thresholds have the potential to introduce a large uncertainty when used to detect plant nutrient limitations, suggesting that the error risks should be cautioned in future studies.


Assuntos
Botânica/métodos , Nitrogênio/metabolismo , Fósforo/metabolismo , Fenômenos Fisiológicos Vegetais , Ecossistema , Fertilizantes , Reprodutibilidade dos Testes , Incerteza
14.
J Plant Res ; 130(6): 1035-1045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28653222

RESUMO

Nitrogen (N) and phosphorus (P) availabilities play crucial roles in plant morphogenesis and physiological processes, but how plant anatomical traits respond to the N and P supply is not well elucidated. We evaluated the effects of N and P supply on multiple leaf and stem anatomical traits of Arabidopsis thaliana. The addition of N increased the stem diameter, cortex thickness, rosette radius, midrib thickness, and size of leaf and stem vasculature significantly. Abaxial stomatal length (LSL) increased while adaxial epidermal cell density decreased significantly with increasing N supply. P addition did not affect stem size and leaf epidermal traits, but enhanced the thickness of stem xylem. The nutrient limiting status did not affect most traits except for LSL. The anatomical traits measured varied a lot in the extent of response to N and P addition, despite relatively stronger response to N addition overall. Cortex thickness, rosette radius, stomatal density and epidermal cell density exhibited relatively high plasticity to both nutrients, while stomatal length and stomatal index were relatively stable. Thus, these results suggested that the anatomical traits of shoot vasculature of A. thaliana were enhanced by both nutrients but more affected by N addition, satisfying the plant growth and nutrient requirements. Our findings may help shed light on plant adaptation to nutrient availability changes under the ongoing anthropogenic impacts, but the generality across numerous plant species still warrants further researches.


Assuntos
Arabidopsis/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Adaptação Fisiológica , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Xilema/anatomia & histologia , Xilema/efeitos dos fármacos , Xilema/crescimento & desenvolvimento
15.
Ecol Lett ; 19(10): 1237-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27501082

RESUMO

Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems.


Assuntos
Ecossistema , Água Doce , Atividades Humanas , Nitrogênio/química , Fósforo/química , China , Poluentes Químicos da Água , Poluição da Água
16.
Ann Bot ; 117(3): 431-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26811314

RESUMO

BACKGROUND AND AIMS: The identification of stoichiometric homeostasis is crucial for understanding plant adaptive strategies under a changing environment. However, current knowledge of plant stoichiometric homeostasis has mainly been obtained from mature leaves, with little from other organs across different developmental stages. METHODS: We conducted a greenhouse nitrogen (N) and phosphorus (P) addition experiment to evaluate the strength of stoichiometric homeostasis across different organs and developmental stages of Arabidopsis thaliana. KEY RESULTS: Homeostatic regulation coefficients (H) for N (HN), P (HP) and N : P ratio (HNP) were highest in reproductive tissue, followed by stem and leaf at the same stage. All H parameters in the same organ decreased significantly over the developmental stages. Leaf HN, HP and HNP were highest at stage 1, followed by stages 2 and 3. Both stem and silique at stage 2 relative to stage 3 had higher HN, HP and HNP. These results suggested that reproductive tissue relative to other organs and young tissue relative to old tissue showed more constrained elemental composition in response to nutrient availabilities, and such trends were also evidenced by stoichiometric scaling relationships. CONCLUSIONS: Our findings highlight that stoichiometric homeostasis is tightly related to the ontogenesis of plant tissue. These results could have a strong implication for diagnosing relative availabilities of N and P in ecosystems, suggesting that the N and P stoichiometry of old tissues might be stronger indicators of nutrient status for plants, but further study is needed to test the generality across species with more distinguishable functional traits.


Assuntos
Arabidopsis/fisiologia , Elementos Químicos , Especificidade de Órgãos , Homeostase , Modelos Biológicos , Nitrogênio/análise , Fósforo/análise , Reprodução
17.
Nat Commun ; 15(1): 5346, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914561

RESUMO

Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired observations of leaf N and P concentrations, taxonomy and 45 environmental covariates, covering 7,549 sites and 3,700 species, to investigate how species identity and environmental variables control variations in mass-based leaf N and P concentrations, and the N:P ratio. We find within-species variation contributes around half of the total variation, with 29%, 31%, and 22% of leaf N, P, and N:P variation, respectively, explained by environmental variables. Within-species plasticity along environmental gradients varies across species and is highest for leaf N:P and lowest for leaf N. We identified effects of environmental variables on within-species variation using random forest models, whereas effects were largely missed by widely used linear mixed-effect models. Our analysis demonstrates a substantial influence of the environment in driving plastic responses of leaf N, P, and N:P within species, which challenges reports of a fixed biogeochemical niche and the overriding importance of species distributions in shaping global patterns of leaf N and P.


Assuntos
Nitrogênio , Fósforo , Filogenia , Folhas de Planta , Fósforo/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Ecossistema , Plantas/metabolismo , Plantas/classificação , Meio Ambiente , Especificidade da Espécie
18.
Science ; 384(6693): 301-306, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635711

RESUMO

China's massive wave of urbanization may be threatened by land subsidence. Using a spaceborne synthetic aperture radar interferometry technique, we provided a systematic assessment of land subsidence in all of China's major cities from 2015 to 2022. Of the examined urban lands, 45% are subsiding faster than 3 millimeters per year, and 16% are subsiding faster than 10 millimeters per year, affecting 29 and 7% of the urban population, respectively. The subsidence appears to be associated with a range of factors such as groundwater withdrawal and the weight of buildings. By 2120, 22 to 26% of China's coastal lands will have a relative elevation lower than sea level, hosting 9 to 11% of the coastal population, because of the combined effect of city subsidence and sea-level rise. Our results underscore the necessity of enhancing protective measures to mitigate potential damages from subsidence.

19.
Chemosphere ; 313: 137555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526137

RESUMO

Anthropogenic input of nutrient has profoundly influenced water quality and aquatic organisms, however, large and unbalanced nitrogen (N) and phosphorus (P) inputs (decoupling) can lead to a range of ecological health problems such as eutrophication. Whether and how the decoupling varies along the aquatic food chain remains poorly addressed. Here we chose an urban river ecosystem in the cosmopolis region of Beijing, with reclaimed water as the entire replenishment water source over 20 years, to demonstrate the decoupling pattern of N vs P across trophic levels. Results showed that organism C, N and P concentration increased, but N:P ratio decreased upward along the food chains, suggesting that this decoupling of N and P increased as trophic level ascends. Compared with natural freshwater ecosystem, the decoupling of N and P was aggravated in the reclaimed water river. Moreover, the homeostasis of N and P were higher at higher relative to lower trophic levels, and higher in macro-food chain relative to planktonic food chain. This study, for the first time, revealed the increasing decoupling of N vs P upward along the major food chains in an urban aquatic ecosystem, and could improve the understanding of nutrient cycling at the food chain level under human disturbance, and provide useful information for ecological restoration and eutrophication control of urban wetlands replenished with reclaimed water.


Assuntos
Ecossistema , Cadeia Alimentar , Humanos , Rios , Água Doce , Fósforo , Nitrogênio
20.
Sci Total Environ ; 729: 138920, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32371208

RESUMO

Nutrient resorption from senescent leaves is one essential plant nutrient strategy. Allocation of nitrogen (N) and phosphorus (P) reflects the influences of evolution and ecological processes on plant functional traits, and thus is related to functional types and environmental factors. However, we know little about the pattern among plant functional types (PFTs) and the driving factors of the allometric relationship of N resorption efficiency (NRE) against P resorption efficiency (PRE) in plant leaves (NRE ~ PREb; b, scaling exponent). We compiled N and P resorption data from the literature, including 2541 records, 894 plant species, and 488 sites worldwide, and then explored the allometric relationships between NRE and PRE across different PFTs and environmental factors (i.e. climate and soil nutrients). The scaling exponent for overall species was 0.88, suggesting that plants generally re-absorb P from senesced leaves at a higher rate than N. Among diverse PFTs, the scaling exponents of broadleaved (0.91), deciduous (0.92), non-leguminous (0.88), and woody plants (0.90) were higher than those of coniferous (0.81), evergreen (0.89), leguminous (0.74), and herbaceous plants (0.76), respectively. The scaling exponents increased with increasing latitude and soil nutrient (N and P) availability, and decreased with increasing mean annual temperature. Our results suggest that terrestrial plants utilize P relative to N more effectively through resorbing a higher proportion of P than N from senescent leaves. However, the differential resorption efficiency between N and P may vary among diverse plant types, and displayed a biogeographic pattern at global scale through the plant-environment interactions. These findings can broaden our understanding of the nutrient recycling processes within plants, and help in better prediction of nutrient balance in response to global changes.


Assuntos
Plantas , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA