Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anesth Analg ; 132(6): 1756-1767, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857022

RESUMO

BACKGROUND: The transient receptor potential vanilloid subtype 3 (TRPV3) channel is activated by innocuous temperature and several chemical stimuli. It is proposed to be involved in pathological pain development and is therefore considered a potential target for treating pain. Local anesthetics have been used for patients with both acute and chronic pain. Although blockage of the voltage-gated sodium channel is the primary mechanism by which local anesthetics exert their effects, they cannot be explained by this mechanism alone, especially in pathologic states such as chronic pain. Indeed, the effects of local anesthetics on multiple targets involved in the pain pathway have been reported. It has also been suggested that modulating the function of transient receptor potential (TRP) channels (eg, TRPV1 and transient receptor potential ankyrin 1 [TRPA1]) is one of the mechanisms of action of local anesthetics. However, the effects of local anesthetics on TRPV3 have not been reported. METHODS: We expressed TRPV3 in Xenopus oocytes and investigated the effects of local anesthetics on 2-aminoethoxydiphenyl borate (2APB)-induced currents using 2-electrode voltage-clamp techniques. RESULTS: Clinically used local anesthetics inhibited the 2APB-activated currents from the TRPV3 channel in a concentration-dependent manner at pharmacologically relevant concentrations with half maximal inhibitory concentration (IC50) values of 2.5 (lidocaine), 1.4 (mepivacaine), 0.28 (ropivacaine), and 0.17 (bupivacaine) mmol/L, respectively. Conversely, these local anesthetics also directly induced currents at higher concentrations, although these currents were quite small compared to the 2APB-induced currents. We found that the inhibition of TRPV3 by lidocaine is noncompetitive and independent of intracellular signaling cascades. 2APB-induced TRPV3 currents were reduced by extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) but not by intracellular QX-314 nor benzocaine. Moreover, lidocaine showed a use-dependent block in TRPV3 inhibition. Finally, QX-314 appeared to slightly permeate the activated TRPV3 channel pore based on examination of oocytes coexpressing TRPV3 and a sodium channel. These results suggest that local anesthetics could inhibit TRPV3 channel function by extracellular interactions of their charged forms with the channel pore. CONCLUSIONS: Local anesthetics inhibited TRPV3 2APB-induced currents at pharmacologically relevant concentrations when TRPV3 was expressed in Xenopus oocytes. These effects seem to occur via an extracellular interaction between the charged form of the anesthetic with the TRPV3 channel pore. These results help to elucidate the mechanisms of action of local anesthetics.


Assuntos
Anestésicos Locais/administração & dosagem , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Xenopus laevis
2.
J Pharmacol Sci ; 142(4): 140-147, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31982332

RESUMO

Carvacrol is the predominant monoterpene in essential oils from many aromatic plants. Several animal studies showing analgesic effects of carvacrol indicate potential of carvacrol as a new medication for patients with refractory pain. Voltage-gated sodium channels (Nav) are thought to have crucial roles in the development of inflammatory and neuropathic pain, but there is limited information about whether the analgesic mechanism of carvacrol involves Nav. We used whole-cell, two-electrode, voltage-clamp techniques to examine the effects of carvacrol on sodium currents in Xenopus oocytes expressing α subunits of Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8. Carvacrol dose-dependently suppressed sodium currents at a holding potential that induced half-maximal current. The half-maximal inhibitory concentration values for Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8 were 233, 526, 215, 367, and 824 µmol/L, respectively, indicating that carvacrol had more potent inhibitory effects towards Nav1.2 and Nav1.6 than Nav1.3, Nav1.7, and Nav1.8. Gating analysis showed a depolarizing shift of the activation curve and a hyperpolarizing shift of the inactivation curve in all five α subunits following carvacrol treatment. Furthermore, carvacrol exhibits a use-dependent block for all five α Nav subunits. These findings provide a better understanding of the mechanisms associated with the analgesic effect of carvacrol.


Assuntos
Cimenos/farmacologia , Oócitos/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem , Analgésicos , Animais , Xenopus
3.
Am J Respir Crit Care Med ; 198(2): 232-244, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29480750

RESUMO

RATIONALE: Nitric oxide (NO), synthesized by NOSs (NO synthases), plays a role in the development of pulmonary hypertension (PH). However, the role of NO/NOSs in bone marrow (BM) cells in PH remains elusive. OBJECTIVES: To determine the role of NOSs in BM cells in PH. METHODS: Experiments were performed on 36 patients with idiopathic pulmonary fibrosis and on wild-type (WT), nNOS (neuronal NOS)-/-, iNOS (inducible NOS)-/-, eNOS (endothelial NOS)-/-, and n/i/eNOSs-/- mice. MEASUREMENTS AND MAIN RESULTS: In the patients, there was a significant correlation between higher pulmonary artery systolic pressure and lower nitrite plus nitrate levels in the BAL fluid. In the mice, hypoxia-induced PH deteriorated significantly in the n/i/eNOSs-/- genotype and, to a lesser extent, in the eNOS-/- genotype as compared with the WT genotype. In the n/i/eNOSs-/- genotype exposed to hypoxia, the number of circulating BM-derived vascular smooth muscle progenitor cells was significantly larger, and transplantation of green fluorescent protein-transgenic BM cells revealed the contribution of BM cells to pulmonary vascular remodeling. Importantly, n/i/eNOSs-/--BM transplantation significantly aggravated hypoxia-induced PH in the WT genotype, and WT-BM transplantation significantly ameliorated hypoxia-induced PH in the n/i/eNOSs-/- genotype. A total of 69 and 49 mRNAs related to immunity and inflammation, respectively, were significantly upregulated in the lungs of WT genotype mice transplanted with n/i/eNOSs-/--BM compared with those with WT-BM, suggesting the involvement of immune and inflammatory mechanisms in the exacerbation of hypoxia-induced PH caused by n/i/eNOSs-/--BM transplantation. CONCLUSIONS: These results demonstrate that myelocytic n/i/eNOSs play an important protective role in the pathogenesis of PH.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células Precursoras de Granulócitos/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Óxido Nítrico Sintase/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Modelos Animais , Substâncias Protetoras/uso terapêutico
4.
J Pharmacol Sci ; 137(1): 93-97, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29773519

RESUMO

The neurosteroid allopregnanolone has potent analgesic effects, and its potential use for neuropathic pain is supported by recent reports. However, the analgesic mechanisms are obscure. The voltage-gated sodium channels (Nav) α subunit Nav1.3 is thought to play an essential role in neuropathic pain. Here, we report the effects of allopregnanolone sulfate (APAS) on sodium currents (INa) in Xenopus oocytes expressing Nav1.3 with ß1 or ß3 subunits. APAS suppressed INa of Nav1.3 with ß1 and ß3 in a concentration-dependent manner (IC50 values; 75 and 26 µmol/L). These results suggest the possible importance of Nav1.3 inhibition for the analgesic mechanisms of allopregnanolone.


Assuntos
Analgésicos , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Neurotransmissores/farmacologia , Oócitos/metabolismo , Pregnanolona/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Relação Dose-Resposta a Droga , Feminino , Neuralgia/tratamento farmacológico , Neurotransmissores/uso terapêutico , Pregnanolona/uso terapêutico , Xenopus
5.
Diabetologia ; 60(6): 1138-1151, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352942

RESUMO

AIMS/HYPOTHESIS: Nitric oxide (NO) is synthesised not only from L-arginine by NO synthases (NOSs), but also from its inert metabolites, nitrite and nitrate. Green leafy vegetables are abundant in nitrate, but whether or not a deficiency in dietary nitrite/nitrate spontaneously causes disease remains to be clarified. In this study, we tested our hypothesis that long-term dietary nitrite/nitrate deficiency would induce the metabolic syndrome in mice. METHODS: To this end, we prepared a low-nitrite/nitrate diet (LND) consisting of an amino acid-based low-nitrite/nitrate chow, in which the contents of L-arginine, fat, carbohydrates, protein and energy were identical with a regular chow, and potable ultrapure water. Nitrite and nitrate were undetectable in both the chow and the water. RESULTS: Three months of the LND did not affect food or water intake in wild-type C57BL/6J mice compared with a regular diet (RD). However, in comparison with the RD, 3 months of the LND significantly elicited visceral adiposity, dyslipidaemia and glucose intolerance. Eighteen months of the LND significantly provoked increased body weight, hypertension, insulin resistance and impaired endothelium-dependent relaxations to acetylcholine, while 22 months of the LND significantly led to death mainly due to cardiovascular disease, including acute myocardial infarction. These abnormalities were reversed by simultaneous treatment with sodium nitrate, and were significantly associated with endothelial NOS downregulation, adiponectin insufficiency and dysbiosis of the gut microbiota. CONCLUSIONS/INTERPRETATION: These results provide the first evidence that long-term dietary nitrite/nitrate deficiency gives rise to the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice, indicating a novel pathogenetic role of the exogenous NO production system in the metabolic syndrome and its vascular complications.


Assuntos
Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
6.
J Pharmacol Sci ; 133(4): 268-275, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28433565

RESUMO

Extract of pine nodules (matsufushi) formed by bark proliferation on the surface of trees of Pinus tabulaeformis or Pinus massoniana has been used as an analgesic for joint pain, rheumatism, neuralgia, dysmenorrhea and other complaints in Chinese traditional medicine. Here we report the effects of matsufushi extract and its components on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that matsufushi extract (0.0003-0.005%) and its component, SJ-2 (5-hydroxy-3-methoxy-trans-stilbene) (0.3-100 µM), but not the other three, concentration-dependently inhibited catecholamine secretion induced by acetylcholine, a physiological secretagogue. Matsufushi extract (0.0003-0.005%) and SJ-2 (0.3-100 µM) also inhibited 45Ca2+ influx induced by acetylcholine in a concentration-dependent manner, similar to its effect on catecholamine secretion. They also suppressed 14C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine. In Xenopus oocytes expressing α3ß4 nicotinic acetylcholine receptors, matsufushi extract (0.00003-0.001%) and SJ-2 (1-100 µM) directly inhibited the current evoked by acetylcholine. The present findings suggest that SJ-2, as well as matsufushi extract, inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.


Assuntos
Acetilcolina/farmacologia , Medula Suprarrenal/citologia , Medula Suprarrenal/metabolismo , Catecolaminas/biossíntese , Catecolaminas/metabolismo , Pinus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Acetilcolina/antagonistas & inibidores , Animais , Cálcio/metabolismo , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Antagonistas Nicotínicos , Extratos Vegetais/isolamento & purificação , Receptores Nicotínicos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Xenopus
7.
Lung ; 194(1): 121-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26685897

RESUMO

BACKGROUND: Asthma is characterized by airflow limitation with chronic airway inflammation, hyperresponsiveness and mucus hypersecretion. NO is generated by three nitric oxide synthase (i/n/eNOSs) isoforms, but conflicting results have been reported using asthmatic mice treated with NOSs inhibitors and NOS-knockout mice. To elucidate the authentic role of NO/NOSs in asthma, we used asthmatic mice lacking all NOSs (n/i/eNOS(-/-)). METHODS: Wild-type and n/i/eNOS(-/-) mice were sensitized and challenged with ovalbumin. Pathological findings and expressions of interferon (IFN)-γ, interleukin (IL)-4, -5, -10, -13 and chemokines in the lung were evaluated. RESULTS: Decreased eosinophilic inflammation, bronchial thickening and mucus secretion, IL-4, -5 and -13, monocyte chemoattractant protein-1, eotaxin-1 and thymus and activation-regulated chemokine expressions were observed in n/i/eNOS(-/-) mice compared to wild-type, but expressions of IFN-γ and IL-10 were similar. CONCLUSION: Using asthmatic n/i/eNOS(-/-) mice, NO plays important roles in accelerating bronchial eosinophilic inflammation and mucus hypersecretion in the pathophysiology of asthma.


Assuntos
Asma/enzimologia , Bronquite/patologia , Citocinas/genética , Muco/metabolismo , Óxido Nítrico Sintase/deficiência , RNA Mensageiro/análise , Animais , Asma/genética , Asma/patologia , Bronquite/imunologia , Quimiocina CCL11/genética , Quimiocina CCL17/genética , Quimiocina CCL2/genética , Eosinófilos/imunologia , Expressão Gênica , Interferon gama/genética , Interleucina-10/genética , Interleucina-13/genética , Interleucina-4/genética , Interleucina-5/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/genética
8.
J Pharmacol Sci ; 127(1): 42-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704017

RESUMO

Nitric oxide (NO) is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs), all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling), lung abnormalities (accelerated pulmonary fibrosis), and bone abnormalities (increased bone mineral density and bone turnover). These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.


Assuntos
Osso e Ossos/enzimologia , Doenças Cardiovasculares/enzimologia , Doenças Metabólicas/enzimologia , Óxido Nítrico Sintase/metabolismo , Fibrose Pulmonar/enzimologia , Insuficiência Renal Crônica/enzimologia , Animais , Modelos Animais de Doenças , Humanos , Doenças Metabólicas/genética , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase/genética , Fibrose Pulmonar/genética , Insuficiência Renal Crônica/genética
9.
Anesth Analg ; 120(3): 597-605, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25695577

RESUMO

BACKGROUND: Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. METHODS: We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. RESULTS: Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 µmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. CONCLUSIONS: Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion channel pore both extracellularly and intracellularly. These results help to understand the mechanisms underlying the analgesic effects of lidocaine when it is administered locally at least.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Anestésicos Locais/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Relação Dose-Resposta a Droga , Feminino , Humanos , Lidocaína/metabolismo , Potenciais da Membrana , Antagonistas do Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X3/efeitos dos fármacos , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X4/efeitos dos fármacos , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fatores de Tempo , Xenopus laevis
10.
J UOEH ; 37(1): 33-42, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25787100

RESUMO

The norepinephrine transporter is selectively expressed in noradrenergic nerve terminals, where it can exert spatial and temporal control over the action of norepinephrine. The norepinephrine transporter mediates the termination of neurotransmission via the reuptake of norepinephrine released into the extracellular milieu. In the present brief review, we report our recent studies about the effects of various pharmacological agents such as fasudil, nicotine, pentazocine, ketamine and genistein on norepinephrine transporter function.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Genisteína/farmacologia , Ketamina/farmacologia , Nicotina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/fisiologia , Pentazocina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Neurônios Adrenérgicos/metabolismo , Animais , Células Cultivadas , Fluoxetina/análogos & derivados , Fluoxetina/metabolismo , Humanos , Terminações Nervosas/metabolismo , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica/genética
11.
J Mol Cell Cardiol ; 77: 29-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25265498

RESUMO

We investigated the effect of subtotal nephrectomy on the incidence of acute myocardial infarction (AMI) in mice deficient in all three nitric oxide synthases (NOSs). Two-thirds nephrectomy (NX) was performed on male triple NOSs(-/-) mice. The 2/3NX caused sudden cardiac death due to AMI in the triple NOSs(-/-) mice as early as 4months after the surgery. The 2/3NX triple NOSs(-/-) mice exhibited electrocardiographic ST-segment elevation, reduced heart rate variability, echocardiographic regional wall motion abnormality, and accelerated coronary arteriosclerotic lesion formation. Cardiovascular risk factors (hypertension, hypercholesterolemia, and hyperglycemia), an increased number of circulating bone marrow-derived vascular smooth muscle cell (VSMC) progenitor cells (a pro-arteriosclerotic factor), and cardiac up-regulation of stromal cell-derived factor (SDF)-1α (a chemotactic factor of the progenitor cells) were noted in the 2/3NX triple NOSs(-/-) mice and were associated with significant increases in plasma angiotensin II levels (a marker of renin-angiotensin system activation) and urinary 8-isoprostane levels (a marker of oxidative stress). Importantly, combined treatment with a clinical dosage of an angiotensin II type 1 receptor blocker, irbesartan, and a calcium channel antagonist, amlodipine, markedly prevented coronary arteriosclerotic lesion formation and the incidence of AMI and improved the prognosis of those mice, along with ameliorating all those pro-arteriosclerotic parameters. The 2/3NX triple NOSs(-/-) mouse is a new experimentally useful model of AMI. Renin-angiotensin system activation, oxidative stress, cardiovascular risk factors, and SDF-1α-induced recruitment of bone marrow-derived VSMC progenitor cells appear to be involved in the pathogenesis of AMI in this model.


Assuntos
Infarto do Miocárdio/enzimologia , Óxido Nítrico Sintase/genética , Animais , Modelos Animais de Doenças , Masculino , Camundongos Knockout , Infarto do Miocárdio/genética , Nefrectomia , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo
12.
Respir Res ; 15: 92, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25092105

RESUMO

BACKGROUND: Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms. METHODS: Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS-/-) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS-/- mice with BLM-induced pulmonary fibrosis. RESULTS: The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS-/- mice. Long-term treatment with the supplemental NO donor in n/i/eNOS-/- mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs. CONCLUSIONS: These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis.


Assuntos
Bleomicina/toxicidade , Óxido Nítrico/uso terapêutico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Animais , Masculino , Camundongos , Camundongos Knockout , Fibrose Pulmonar/patologia
13.
Anesthesiology ; 121(3): 620-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24809977

RESUMO

BACKGROUND: The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of γ-aminobutyric acid type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indicated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allopregnanolone are still unclear. Voltage-gated sodium channels (Nav) are thought to play important roles in inflammatory and neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels. METHODS: Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on sodium current were examined in Xenopus oocytes expressing Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits. RESULTS: APAS suppressed sodium currents of Nav1.2, Nav1.6, and Nav1.7 at a holding potential causing half-maximal current in a concentration-dependent manner, whereas it markedly enhanced sodium current of Nav1.8 at a holding potential causing maximal current. Half-maximal inhibitory concentration values for Nav1.2, Nav1.6, and Nav1.7 were 12 ± 4 (n = 6), 41 ± 2 (n = 7), and 131 ± 15 (n = 5) µmol/l (mean ± SEM), respectively. The effects of PAS were lower than those of APAS. From gating analysis, two compounds increased inactivation of all α subunits, while they showed different actions on activation of each α subunit. Moreover, two compounds showed a use-dependent block on Nav1.2, Nav1.6, and Nav1.7. CONCLUSION: APAS and PAS have diverse effects on sodium currents in oocytes expressing four α subunits. APAS inhibited the sodium currents of Nav1.2 most strongly.


Assuntos
Pregnanolona/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Animais , Feminino , Canal de Sódio Disparado por Voltagem NAV1.2/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/fisiologia , Xenopus laevis
14.
J Pharmacol Sci ; 124(2): 123-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492414

RESUMO

Flavonoids are biologically active polyphenolic compounds widely distributed in plants. Recent research has focused on high dietary intake of flavonoids because of their potential to reduce the risks of diseases such as cardiovascular diseases, diabetes, and cancers. We report here the effects of plant flavonoids on catecholamine signaling in cultured bovine adrenal medullary cells used as a model of central and peripheral sympathetic neurons. Daidzein (0.01 - 1.0 µM), a soy isoflavone, stimulated (14)C-catecholamine synthesis through plasma membrane estrogen receptors. Nobiletin (1.0 - 100 µM), a citrus polymethoxy flavone, enhanced (14)C-catecholamine synthesis through the phosphorylation of Ser19 and Ser40 of tyrosine hydroxylase, which was associated with (45)Ca(2+) influx and catecholamine secretion. Treatment with genistein (0.01 - 10 µM), another isoflavone, but not daidzein, enhanced [(3)H]noradrenaline uptake by SK-N-SH cells, a human noradrenergic neuroblastoma cell line. Daidzein as well as nobiletin (≥ 1.0 µM) inhibited catecholamine synthesis and secretion induced by acetylcholine, a physiological secretagogue. The present review shows that plant flavonoids have various pharmacological potentials on the catecholamine system in adrenal medullary cells, and probably also in sympathetic neurons.


Assuntos
Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Flavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acetilcolina/antagonistas & inibidores , Acetilcolina/farmacologia , Animais , Catecolaminas/biossíntese , Bovinos , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Flavonas/farmacologia , Genisteína/farmacologia , Humanos , Isoflavonas/farmacologia , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
15.
J Pharmacol Sci ; 124(1): 66-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24389818

RESUMO

We previously reported the occurrence and function of plasma membrane estrogen receptors in cultured bovine adrenal medullary cells. Here we report the effects of raloxifene and tamoxifen, selective estrogen receptor modulators, on plasma membrane estrogen receptors and catecholamine synthesis and secretion in these cells. Raloxifene caused dual effects on the specific binding of [(3)H]17ß-estradiol to the plasma membranes isolated from bovine adrenal medulla; that is, it had a stimulatory effect at 1.0 - 10 nM but an inhibitory effect at 1.0 - 10 µM, whereas tamoxifen (1.0 nM - 10 µM) increased binding at all concentrations (except for 100 nM). Tamoxifen at 100 nM caused a significant increase in basal (14)C-catecholamine synthesis from [(14)C]tyrosine, whereas tamoxifen and raloxifene at higher concentrations attenuated basal and acetylcholine-induced (14)C-catecholamine synthesis. Raloxifene (0.3, 1.0, and 3 - 100 µM) and tamoxifen (10 - 100 µM) also suppressed catecholamine secretion and (45)Ca(2+) and (22)Na(+) influx, respectively, induced by acetylcholine. Raloxifene (1.0 µM) inhibited Na(+) current evoked by acetylcholine in Xenopus oocytes expressing α4ß2 neuronal nicotinic acetylcholine receptors. The present findings suggest that raloxifene and tamoxifen at low concentrations allosterically modulate plasma membrane estrogen receptors and at high concentrations inhibit acetylcholine-induced catecholamine synthesis and secretion by inhibiting Na(+) and Ca(2+) influx in bovine adrenal medulla.


Assuntos
Medula Suprarrenal/citologia , Medula Suprarrenal/metabolismo , Catecolaminas/biossíntese , Catecolaminas/metabolismo , Membrana Celular/metabolismo , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Acetilcolina/farmacologia , Animais , Cálcio/metabolismo , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Oócitos/metabolismo , Sódio , Tirosina/metabolismo , Xenopus
16.
Anesth Analg ; 118(3): 554-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24557103

RESUMO

BACKGROUND: Anandamide is an endocannabinoid that regulates multiple physiological functions by pharmacological actions, in a manner similar to marijuana. Recently, much attention has been paid to the analgesic effect of endocannabinoids in terms of identifying new pharmacotherapies for refractory pain management, but the mechanisms of the analgesic effects of anandamide are still obscure. Voltage-gated sodium channels are believed to play important roles in inflammatory and neuropathic pain. We investigated the effects of anandamide on 4 neuronal sodium channel α subunits, Nav1.2, Nav1.6, Nav1.7, and Nav1.8, to explore the mechanisms underlying the antinociceptive effects of anandamide. METHODS: We studied the effects of anandamide on Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits with ß1 subunits by using whole-cell, 2-electrode, voltage-clamp techniques in Xenopus oocytes. RESULTS: Anandamide inhibited sodium currents of all subunits at a holding potential causing half-maximal current (V1/2) in a concentration-dependent manner. The half-maximal inhibitory concentration values for Nav1.2, Nav1.6, Nav1.7, and Nav1.8 were 17, 12, 27, and 40 µmol/L, respectively, indicating an inhibitory effect on Nav1.6, which showed the highest potency. Anandamide raised the depolarizing shift of the activation curve as well as the hyperpolarizing shift of the inactivation curve in all α subunits, suggesting that sodium current inhibition was due to decreased activation and increased inactivation. Moreover, anandamide showed a use-dependent block in Nav1.2, Nav1.6, and Nav1.7 but not Nav1.8. CONCLUSION: Anandamide inhibited the function of α subunits in neuronal sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8. These results help clarify the mechanisms of the analgesic effects of anandamide.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Oócitos/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Oócitos/metabolismo , Canais de Sódio Disparados por Voltagem , Xenopus laevis
17.
J UOEH ; 36(3): 171-7, 2014 Sep 01.
Artigo em Japonês | MEDLINE | ID: mdl-25224709

RESUMO

Climacteric symptoms are multiple syndromes in menopausal women. It is known that autonomic nervous activity disorder plays an important role in these symptoms. In the present brief review, we report our recent studies of the relation between climacteric symptoms and autonomic nervous system balance measured by power spectral analysis of heart rate variability (HRV) using a standard hexagon radar chart. The sympathetic excitability and irritability, and the standard deviation of mean R-R intervals in the supine position were significantly decreased in women with climacteric symptoms compared to control women without climacteric symptoms. There was a negative correlation (r = -0.363, P = 0.0167) between the standard deviation of mean R-R intervals in the supine position and the simplified menopausal index score. These results show suggest a close relation between climacteric symptoms and autonomic nervous activities, and our power spectral analysis of HRV, which provides a standard hexagonal radar chart composed of three sympathetic and three parasympathetic parameters, may be helpful in the diagnosis and treatment of climacteric symptoms in menopausal women.


Assuntos
Climatério , Frequência Cardíaca , Feminino , Humanos , Pessoa de Meia-Idade
18.
Circ J ; 77(7): 1827-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23615023

RESUMO

BACKGROUND: Hormone replacement therapy has failed to reduce ischemic cardiovascular events in climacteric women. To explore alternative therapy, we examined whether san'o-shashin-to (TJ-113), a kampo medicine, ameliorates cardiac ischemia-reperfusion (IR) injury in a climacteric rat model. METHODS AND RESULTS: Cardiac function and infarct size after IR were significantly exacerbated in ovariectomized rats as compared with sham-operated rats, whereas long-term treatment with a clinical dosage of TJ-113 for 4 weeks markedly improved these functional and morphological changes. Myocardial inducible nitric oxide synthase (iNOS) expression and peroxynitrite levels were significantly higher in ovariectomized rats compared with sham-operated rats, and long-term TJ-113 treatment significantly reduced these oxidative changes. Furthermore, myocardial manganese superoxide dismutase (Mn-SOD) activity was significantly lower in ovariectomized than in sham-operated rats, and long-term TJ-113 treatment significantly restored antioxidant activity. Importantly, those beneficial actions of TJ-113 were significantly inhibited by the estrogen receptor antagonist, fulvestrant, and the phytoestrogen, emodin, a TJ-113 ingredient, mimicked the actions of TJ-113, suggesting involvement of emodin in the effects of TJ-113. CONCLUSIONS: These results provide the first evidence that long-term treatment with a clinical dosage of TJ-113 markedly ameliorates cardiac IR injury in ovariectomized rats via inhibition of iNOS expression, suppression of peroxynitrite formation, and restoration of Mn-SOD activity. TJ-113 may be a novel therapeutic option in the treatment of ischemic heart disease in climacteric women.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicina Kampo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Berberina , Feminino , Humanos , Proteínas Musculares/biossíntese , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Ovariectomia , Oxirredução/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Pós-Menopausa/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/biossíntese , Fatores de Tempo
19.
J Pharmacol Sci ; 121(2): 138-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23370666

RESUMO

(±)-Pentazocine (PTZ), a non-narcotic analgesic, is used for the clinical management of moderate to severe pain. To study the effect of PTZ on the descending noradrenergic inhibitory system, in the present study we examined the effect of [(3)H]norepinephrine (NE) uptake by cultured bovine adrenal medullary cells and human neuroblastoma SK-N-SH cells. (-)-PTZ and (+)-PTZ inhibited [(3)H]NE uptake by adrenal medullary cells in a concentration-dependent (3-100 µM) manner. Eadie-Hofstee analysis of [(3)H]NE uptake showed that both PTZs caused a significant decrease in the V(max) with little change in the apparent K(m), suggesting non-competitive inhibition. Nor-Binaltorphimine and BD-1047, κ-opioid and σ-receptor antagonists, respectively, did not affect the inhibition of [(3)H]NE uptake induced by (-)-PTZ and (+)-PTZ, respectively. PTZs suppressed specific [(3)H]nisoxetine binding to intact SK-N-SH cells, but not directly to the plasma membranes isolated from the bovine adrenal medulla. Scatchard analysis of [(3)H]nisoxetine binding to SK-N-SH cells revealed that PTZs reduced the B(max) without changing the apparent K(d). Western blot analysis showed a decrease in biotinylated cell-surface NE transporter (NET) expression after the treatment with (-)-PTZ. These findings suggest that PTZ inhibits the NET function by reducing the amount of NET in the cell surface membranes through an opioid and σ-receptor-independent pathway.


Assuntos
Analgésicos Opioides/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Pentazocina/farmacologia , Medula Suprarrenal/diagnóstico por imagem , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Bovinos , Linhagem Celular , Membrana Celular/diagnóstico por imagem , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Etilenodiaminas/farmacologia , Fluoxetina/análogos & derivados , Fluoxetina/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Norepinefrina/metabolismo , Cintilografia
20.
J Immunol ; 186(6): 3745-52, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21307293

RESUMO

A major neurotransmitter dopamine transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1-D5. Several studies have shown that dopamine not only mediates interactions into the nervous system, but can contribute to the modulation of immunity via receptors expressed on immune cells. We have previously shown an autocrine/paracrine release of dopamine by dendritic cells (DCs) during Ag presentation to naive CD4(+) T cells and found efficacious results of a D1-like receptor antagonist SCH-23390 in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis and in the NOD mouse model of type I diabetes, with inhibition of Th17 response. This study aimed to assess the role of dopaminergic signaling in Th17-mediated immune responses and in the pathogenesis of rheumatoid arthritis (RA). In human naive CD4(+) T cells, dopamine increased IL-6-dependent IL-17 production via D1-like receptors, in response to anti-CD3 plus anti-CD28 mAb. Furthermore, dopamine was localized with DCs in the synovial tissue of RA patients and significantly increased in RA synovial fluid. In the RA synovial/SCID mouse chimera model, although a selective D2-like receptor antagonist haloperidol significantly induced accumulation of IL-6(+) and IL-17(+) T cells with exacerbated cartilage destruction, SCH-23390 strongly suppressed these responses. Taken together, these findings indicate that dopamine released by DCs induces IL-6-Th17 axis and causes aggravation of synovial inflammation of RA, which is the first time, to our knowledge, that actual evidence has shown the pathological relevance of dopaminergic signaling with RA.


Assuntos
Artrite Reumatoide/terapia , Benzazepinas/farmacologia , Linfócitos T CD4-Positivos/imunologia , Cartilagem Articular/imunologia , Dopamina/farmacologia , Interleucina-17/biossíntese , Interleucina-6/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Benzazepinas/administração & dosagem , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Diferenciação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos SCID , Distribuição Aleatória , Receptores de Dopamina D1/antagonistas & inibidores , Fase de Repouso do Ciclo Celular/imunologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/transplante , Sinovite/imunologia , Sinovite/patologia , Sinovite/terapia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/patologia , Quimeras de Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA