Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791162

RESUMO

Early detection of drug-induced kidney injury is essential for drug development. In this study, multiple low-dose aristolochic acid (AA) and cisplatin (Cis) injections increased renal mRNA levels of inflammation, fibrosis, and renal tubule injury markers. We applied a serum amyloid A3 (Saa3) promoter-driven luciferase reporter (Saa3 promoter-luc mice) to these two tubulointerstitial nephritis models and performed in vivo bioluminescence imaging to monitor early renal pathologies. The bioluminescent signals from renal tissues with AA or CIS injections were stronger than those from normal kidney tissues obtained from normal mice. To verify whether the visualized bioluminescence signal was specifically generated by the injured kidney, we performed in vivo bioluminescence analysis after opening the stomachs of Saa3 promoter-luc mice, and the Saa3-mediated bioluminescent signal was specifically detected in the injured kidney. This study showed that Saa3 promoter activity is a potent non-invasive indicator for the early detection of drug-induced nephrotoxicity.


Assuntos
Ácidos Aristolóquicos , Luciferases , Regiões Promotoras Genéticas , Proteína Amiloide A Sérica , Animais , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Camundongos , Luciferases/metabolismo , Luciferases/genética , Ácidos Aristolóquicos/toxicidade , Genes Reporter , Cisplatino/toxicidade , Cisplatino/efeitos adversos , Medições Luminescentes/métodos , Masculino , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Eur J Nutr ; 61(2): 605-613, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34436643

RESUMO

Although overt vitamin B6 deficiency is rare, marginal vitamin B6 deficiency is frequent and occurs in a consistent proportion of the population. The marginal vitamin B6 deficiency appears to relate to an increased risk of inflammation-related diseases, such as cardiovascular diseases and cancers. Of all the cardiovascular diseases, heart failure is a complex clinical syndrome associated with a high mortality rate. So far, information regarding the cardioprotective mechanisms of vitamin B6 has been limited. Meanwhile, recent studies have revealed that vitamin B6 treatment increases cardiac levels of imidazole dipeptides (e.g., carnosine, anserine, and homocarnosine), histamine, and γ-aminobutyric acid (GABA) and suppresses P2X7 receptor-mediated NLRP3 inflammasome. These modulations may imply potential cardioprotective mechanisms of vitamin B6. These modulations may also be involved in the underlying mechanisms through which vitamin B6 suppresses oxidative stress and inflammation. This review provides an up-to-date evaluation of our current understanding of the cardioprotective mechanisms of vitamin B6.


Assuntos
Deficiência de Vitamina B 6 , Vitamina B 6 , Coração , Humanos , Inflamassomos , Inflamação/etiologia
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055081

RESUMO

The early detection of diabetic nephropathy (DN) in mice is necessary for the development of drugs and functional foods. The purpose of this study was to identify genes that are significantly upregulated in the early stage of DN progression and develop a novel model to non-invasively monitor disease progression within living animals using in vivo imaging technology. Streptozotocin (STZ) treatment has been widely used as a DN model; however, it also exhibits direct cytotoxicity to the kidneys. As it is important to distinguish between DN-related and STZ-induced nephropathy, in this study, we compared renal responses induced by the diabetic milieu with two types of STZ models: multiple low-dose STZ injections with a high-fat diet and two moderate-dose STZ injections to induce DN. We found 221 genes whose expression was significantly altered during DN development in both models and identified serum amyloid A3 (Saa3) as a candidate gene. Next, we applied the Saa3 promoter-driven luciferase reporter (Saa3-promoter luc mice) to these two STZ models and performed in vivo bioluminescent imaging to monitor the progression of renal pathology. In this study, to further exclude the possibility that the in vivo bioluminescence signal is related to renal cytotoxicity by STZ treatment, we injected insulin into Saa3-promoter luc mice and showed that insulin treatment could downregulate renal inflammatory responses with a decreased signal intensity of in vivo bioluminescence imaging. These results strongly suggest that Saa3 promoter activity is a potent non-invasive indicator that can be used to monitor DN progression and explore therapeutic agents and functional foods.


Assuntos
Nefropatias Diabéticas/metabolismo , Expressão Gênica , Genes Reporter , Luciferases/genética , Imagem Molecular , Regiões Promotoras Genéticas , Proteína Amiloide A Sérica/genética , Animais , Biomarcadores , Diabetes Mellitus Experimental , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/etiologia , Imunofluorescência , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Medições Luminescentes/métodos , Camundongos , Imagem Molecular/métodos , Transcriptoma
4.
Biosci Biotechnol Biochem ; 85(2): 447-451, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604639

RESUMO

Choline is an important nutrient during pregnancy and lactation. Maternal choline deficiency in CD-1 mice lowers liver betaine levels in male offspring. By contrast, it increases elovl3 and vanin-1 mRNA levels in female offspring. Taken together, these observations suggest gender-specific responses to a choline-deficient diet.


Assuntos
Deficiência de Colina/metabolismo , Colina/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Caracteres Sexuais , Animais , Deficiência de Colina/genética , Deficiência de Colina/fisiopatologia , Feminino , Masculino , Camundongos
5.
Amino Acids ; 52(5): 743-753, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32361909

RESUMO

Carnosine (ß-alanyl-L-histidine) is an imidazole dipeptide present at high concentrations in skeletal muscles, where it plays a beneficial role. However, oral intake of carnosine or ß-alanine to increase skeletal muscle carnosine levels has disadvantages such as low efficiency and side effects. Therefore, we proposed homocarnosine (γ-aminobutyryl-L-histidine) as a novel alternative imidazole peptide for skeletal muscle based on its structural similarity to carnosine. To induce endogenous homocarnosine synthesis in skeletal muscles, mice were fed a basal diet mixed with 0, 0.5, 2, or 5% γ-aminobutyric acid (GABA) for 6 weeks. As expected, in the control group (0% GABA), GABA and homocarnosine were present in trace concentrations. Skeletal muscle homocarnosine levels were significantly increased in the 2% and 5% GABA intake groups (tenfold, P < 0.01 and 53-fold, P < 0.01; respectively) relative to those of the control group, whereas 0.5% GABA intake induced no such effect. GABA intake had no effect on the levels of carnosine, anserine, and ß-alanine. Vigabatrin (inhibitor of GABA transaminase (GABA-T)) administration to mice receiving 2% GABA intake for 2 weeks led to GABA-T inhibition in the liver. Subsequently, a 43-fold increase in circulating GABA levels and a tendency increase in skeletal muscle homocarnosine levels were observed. Therefore, skeletal muscle homocarnosine synthesis can be induced by supplying its substrate GABA in tissues. As GABA availability is tightly regulated by GABA-T via GABA degradation, inhibitors of GABA or ß-alanine degradation could be novel potential interventions for increasing skeletal muscle imidazole dipeptides.


Assuntos
Carnosina/análogos & derivados , Dieta , Imidazóis/metabolismo , Músculo Esquelético/metabolismo , beta-Alanina/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Carnosina/biossíntese , Comportamento Alimentar , GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/efeitos dos fármacos
6.
Biol Res ; 53(1): 45, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023658

RESUMO

BACKGROUND: Skeletal muscle has an important role in regulating whole-body energy homeostasis, and energy production depends on the efficient function of mitochondria. We demonstrated previously that AT-rich interactive domain 5b (Arid5b) knockout (Arid5b-/-) mice were lean and resistant to high-fat diet (HFD)-induced obesity. While a potential role of Arid5b in energy metabolism has been suggested in adipocytes and hepatocytes, the role of Arid5b in skeletal muscle metabolism has not been studied. Therefore, we investigated whether energy metabolism is altered in Arid5b-/- skeletal muscle. RESULTS: Arid5b-/- skeletal muscles showed increased basal glucose uptake, glycogen content, glucose oxidation and ATP content. Additionally, glucose clearance and oxygen consumption were upregulated in Arid5b-/- mice. The expression of glucose transporter 1 (GLUT1) and 4 (GLUT4) in the gastrocnemius (GC) muscle remained unchanged. Intriguingly, the expression of TBC domain family member 1 (TBC1D1), which negatively regulates GLUT4 translocation to the plasma membrane, was suppressed in Arid5b-/- skeletal muscle. Coimmunofluorescence staining of the GC muscle sections for GLUT4 and dystrophin revealed increased GLUT4 localization at the plasma membrane in Arid5b-/- muscle. CONCLUSIONS: The current study showed that the knockout of Arid5b enhanced glucose metabolism through the downregulation of TBC1D1 and increased GLUT4 membrane translocation in skeletal muscle.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Glucose , Músculo Esquelético , Fatores de Transcrição/genética , Animais , Transporte Biológico , Regulação para Baixo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo
7.
J Food Sci Technol ; 57(7): 2659-2668, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32549616

RESUMO

Inflammation plays an important role in pathogenesis and progression of many chronic diseases. Although, anti-inflammatory activities of mungbean have been suggested, the underlying mechanism have not been fully understood. The present study aimed to reveal the anti-inflammatory effects of mungbean seed coat water extract (MSWE) in lipopolysaccharide (LPS)-stimulated inflammation in RAW 246.7 macrophages and LPS-induced acute liver injury mice. MSWE pretreatment downregulated the elevated expression of inflammatory markers induced by LPS in the transcriptional and protein level. MSWE inhibited NF-κB activation through the suppression of phosphorylated p65 subunit, IκBα degradation, and transforming growth factor-ß-activated kinases 1 (TAK1) phosphorylation in LPS-stimulated RAW 246.7 cells. Vitexin, the major flavonoid in MSWE showed similar effects. In in vivo experiments, we found that oral administration of MSWE downregulated iNOS expression in LPS-induced acute liver injury mice. The mRNA expression of inflammatory markers and macrophage infiltration was also decreased in the livers. Collectively, MSWE exerts anti-inflammatory role, in part possibly through its active compound vitexin, by inhibiting NF-κB activation via inhibition of TAK1 phosphorylation and IκBα degradation. This suggests that MSWE is beneficial to combat various inflammatory diseases.

8.
Am J Physiol Cell Physiol ; 316(2): C162-C174, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462540

RESUMO

Mammalian glycerophosphodiesterases (GDEs) were recently shown to be involved in multiple cellular signaling pathways. This study showed that decreased GDE5 expression results in accumulation of intracellular glycerophosphocholine (GPC), showing that GDE5 is actively involved in GPC/choline metabolism in 3T3-L1 adipocytes. Using 3T3-L1 adipocytes, we further studied the biological significance of GPC/choline metabolism during adipocyte differentiation. Inhibition of GDE5 suppressed the formation of lipid droplets, which is accompanied by the decreased expression of adipocyte differentiation markers. We further showed that the decreased GDE5 expression suppressed mitotic clonal expansion (MCE) of preadipocytes. Decreased expression of CTP: phosphocholine cytidylyltransferase (CCTß), a rate-limiting enzyme for phosphatidylcholine (PC) synthesis, is similarly able to inhibit MCE and PC synthesis; however, the decreased GDE5 expression resulted in accumulation of intracellular GPC but did not affect PC synthesis. Furthermore, we showed that mRNAs of proteoglycans and transporters for organic osmolytes are significantly upregulated and that intracellular amino acids and urea levels are altered in response to GDE5 inhibition. Finally, we showed that reduction of GDE5 expression increased lactate dehydrogenase release from preadipocytes. These observations indicate that decreased GDE5 expression can suppress adipocyte differentiation not through the PC pathway but possibly by intracellular GPC accumulation. These results provide insight into the roles of mammalian GDEs and their dependence upon osmotic regulation by altering intracellular GPC levels.


Assuntos
Adipogenia/fisiologia , Glicerilfosforilcolina/metabolismo , Líquido Intracelular/metabolismo , Mitose/fisiologia , Fosfolipases/antagonistas & inibidores , Fosfolipases/metabolismo , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Líquido Intracelular/efeitos dos fármacos , Camundongos , Mitose/efeitos dos fármacos , Células NIH 3T3 , RNA Interferente Pequeno/farmacologia
9.
Genes Cells ; 23(3): 136-145, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29341420

RESUMO

To determine adipocytokines that play a regulatory role during obesity development, we explored the genes that encode growth factors and investigated the physiological functions for adipose tissue development. Here, we isolated amphiregulin (Areg) gene whose expression was significantly up-regulated in obese adipose tissues. Areg mRNA level was positively correlated with macrophage marker gene expression in adipose tissues in vivo. Unexpectedly, Areg transgenic mice showed less adipose tissue mass with increased mRNA expression levels of Tnf-α and peroxisome proliferator-activated receptor γ coactivator 1α (Pgc-1α) and delayed white adipose tissue development during the convalescent stage in a dextran sodium sulfate-induced colitis model. This study showed that Areg mRNA expression was significantly up-regulated in obese adipose tissues and over-expression of Areg in white adipose tissue caused less adipose tissue mass.


Assuntos
Tecido Adiposo Branco/patologia , Anfirregulina/metabolismo , Colite/patologia , Modelos Animais de Doenças , Obesidade/fisiopatologia , Tecido Adiposo Branco/metabolismo , Anfirregulina/genética , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Int Immunol ; 28(6): 267-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26714588

RESUMO

Memory CD4(+) T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4(+) T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Diester Fosfórico Hidrolases/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos CD4/metabolismo , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Imunocompetência , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Transcriptoma
11.
Biosci Biotechnol Biochem ; 81(11): 2164-2167, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28934905

RESUMO

In this study, we investigated the physiological function of glycerophosphodiesterase 5 (GDE5) in the proliferation of NIH3T3 fibroblasts. We used transcription activator-like effector nuclease (TALEN) in NIH3T3 cells with an intron targeting-mediated GDE5 gene knockout. The heterozygously GDE5-targeted NIH3T3 fibroblasts were isolated and showed decreased cell proliferation and up-regulation of EGFR mRNA expression, indicating that GDE5 modulates fibroblastic cell proliferation.


Assuntos
Fibroblastos/citologia , Edição de Genes/métodos , Fosfolipases/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Animais , Sequência de Bases , Proliferação de Células , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Heterozigoto , Camundongos , Células NIH 3T3 , Fosfolipases/deficiência , Fosfolipases/metabolismo
12.
Biosci Biotechnol Biochem ; 81(5): 938-950, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28388360

RESUMO

The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.


Assuntos
Aspartilglucosilaminase/genética , Aspartilglucosilaminase/metabolismo , Lisossomos/enzimologia , Reprodução Assexuada , Cifozoários/enzimologia , Cifozoários/fisiologia , Regulação para Cima , Sequência de Aminoácidos , Animais , Aspartilglucosilaminase/química , Sequência de Bases , Clonagem Molecular , Loci Gênicos/genética , Morfogênese , Cifozoários/genética , Cifozoários/crescimento & desenvolvimento , Transcrição Gênica
13.
Biosci Biotechnol Biochem ; 81(3): 534-540, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28051915

RESUMO

To develop new whitening agents from natural products, we screened 80 compounds derived from crude drugs in Kampo medicine in a melanin synthesis inhibition assay using murine B16 melanoma cells. The screen revealed that treatment with alisol B, a triterpene from Alismatis rhizoma, significantly decreased both melanin content and cellular tyrosinase activity in B16 cells. However, alisol B did not directly inhibit mushroom tyrosinase activity in vitro. Therefore, we investigated the mechanism underlying the inhibitory effect of alisol B on melanogenesis. Alisol B suppressed mRNA induction of tyrosinase and its transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, alisol B reduced the phosphorylation of CREB and maintained the activation of ERK1/2. These results suggest that the reduction in melanin production by alisol B is due to the downregulation of MITF through the suppression of CREB and activation of ERK and that alisol B may be useful as a new whitening agent.


Assuntos
Alisma/química , Colestenonas/farmacologia , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Preparações Clareadoras de Pele/farmacologia , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Melaninas/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Fosforilação/efeitos dos fármacos , Rizoma/química , Transdução de Sinais/efeitos dos fármacos
15.
J Biol Chem ; 290(7): 4260-71, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25528375

RESUMO

The known mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) hydrolyze glycerophosphodiesters. In this study, two novel members of the mammalian GP-PDE family, GDE4 and GDE7, were isolated, and the molecular basis of mammalian GP-PDEs was further explored. The GDE4 and GDE7 sequences are highly homologous and evolutionarily close. GDE4 is expressed in intestinal epithelial cells, spermatids, and macrophages, whereas GDE7 is particularly expressed in gastro-esophageal epithelial cells. Unlike other mammalian GP-PDEs, GDE4 and GDE7 cannot hydrolyze either glycerophosphoinositol or glycerophosphocholine. Unexpectedly, both GDE4 and GDE7 show a lysophospholipase D activity toward lysophosphatidylcholine (lyso-PC). We purified the recombinant GDE4 and GDE7 proteins and show that these enzymes can hydrolyze lyso-PC to produce lysophosphatidic acid (LPA). Further characterization of purified recombinant GDE4 showed that it can also convert lyso-platelet-activating factor (1-O-alkyl-sn-glycero-3-phosphocholine; lyso-PAF) to alkyl-LPA. These data contribute to our current understanding of mammalian GP-PDEs and of their physiological roles via the control of lyso-PC and lyso-PAF metabolism in gastrointestinal epithelial cells and macrophages.


Assuntos
Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fator de Ativação de Plaquetas/análogos & derivados , Sequência de Aminoácidos , Animais , Western Blotting , Células Cultivadas , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Obesos , Microscopia de Fluorescência , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/genética , Filogenia , Fator de Ativação de Plaquetas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
16.
J Muscle Res Cell Motil ; 36(3): 275-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25697123

RESUMO

The aim of this study was to examine whether prolonged low-frequency force depression (PLFFD) that occurs in situ is the result of decreased myofibrillar Ca(2+) sensitivity and/or reduced sarcoplasmic reticulum (SR) Ca(2+) release. Intact rat gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected 30 min following the cessation of stimulation. Skinned fibre and whole muscle analyses were performed in the superficial region composed exclusively of type IIB fibres. Fatiguing stimulation significantly reduced the ratio of force at low frequency to that at high frequency to 65% in skinned fibres (1 vs. 50 Hz) and 73% in whole muscles (20 vs. 100 Hz). In order to evaluate changes in myofibrillar Ca(2+) sensitivity and ryanodine receptor caffeine sensitivity, skinned fibres were activated in Ca(2+)- and caffeine-containing solutions, respectively. Skinned fibres from fatigued muscles displayed decreased caffeine sensitivity together with increased myofibrillar Ca(2+) sensitivity. Treatment with 2,2'-dithiodipyridine and reduced glutathione induced a smaller increase in myofibrillar Ca(2+)sensitivity in fatigued than in rested fibres. In fatigued muscles, S-glutathionylation of troponin I was increased and submaximal SR Ca(2+) release, induced by 4-chloro-m-cresol, was decreased. These findings suggest that in the early stage of PLFFD that occurs in fast-twitch muscles of exercising animals and humans, S-glutathionylation of troponin I may attenuate PLFFD by increasing myofibrillar Ca(2+) sensitivity and that under such a circumstance, PLFFD may be ascribable to failure of SR Ca(2+) release.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Cresóis/farmacologia , Dissulfetos/farmacologia , Glutationa/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Ratos , Ratos Wistar , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia , Troponina I/metabolismo
17.
J Muscle Res Cell Motil ; 35(2): 179-89, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24557809

RESUMO

The present study investigated changes in autolysis of three calpain isoforms in skeletal muscles undergoing eccentric contractions (ECC), leading to prolonged force deficits. Rat extensor digitorum longus and tibialis anterior muscles were exposed to 200-repeated ECC in situ, excised immediately after or 3 or 6 days after cessation of ECC, and used for measures of force output and for biochemical analyses. Full restoration of tetanic force in ECC-treated muscles was not attained until 6 days of recovery. Maximal calpain activity determined by a fluorogenic substrate was unaltered immediately after ECC, but increased to 313 and 450 % after 3 and 6 days, respectively. Increases in the amount of autolyzed calpain-3 were apparent immediately and developed progressively with recovery time, whereas elevations of autolyzed µ- and m-calpain occurred after 3 and 6 days, respectively. The protein content was augmented only in m-calpain. It is suggested that the three calpain isoforms may be involved in the dismantling, repair, remodeling and/or regeneration processes in ECC-treated muscles.


Assuntos
Calpaína/metabolismo , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Animais , Autólise , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar
18.
Biosci Biotechnol Biochem ; 78(8): 1357-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25130737

RESUMO

Macrophage infiltration in the adipose tissue, and the interaction with adipocytes, is well documented to be involved in fat inflammation and obesity-associated complications. In this study, we isolated IκB kinase ε (IKKε) as a key adipocyte factor that is potentially affected by interaction with macrophages in adipose tissue in vivo. We showed that IKKε mRNA expression levels in white adipose tissue were increased in both genetic and diet-induced obese mouse. Furthermore, IKKε mRNA expression was decreased by the administration of vitamin B6, an anti-inflammatory vitamin, and that IKKε expression levels in adipose tissue were closely correlated with the numbers of infiltrating macrophages. In a co-culture system, we showed that IKKε expression in adipocytes was upregulated by interaction with activated macrophages. This study provides novel insight into IKKε, which is involved in adipose tissue inflammation during the development of obesity.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Comunicação Celular , Quinase I-kappa B/genética , Macrófagos/citologia , Regulação para Cima , Células 3T3-L1 , Animais , Contagem de Células , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Nutrients ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202006

RESUMO

Marginal vitamin B6 (B6) deficiency is a widespread global concern. Inadequate B6 levels have been linked to an increased risk of age-related chronic diseases such as cardiovascular diseases and cancers. In recent years, the growing concern over sarcopenia (the age-related loss of muscle mass and strength) and frailty (a decline in physiological resilience and increased vulnerability associated with aging) is particularly relevant due to the emergence of super-aged societies in developed countries. Notably, among the thirty-one studies included in this review, twenty-five showed a significant association of B6 status with sarcopenia, frailty, and all-cause mortality in adults (p < 0.05), while six showed no association. Emerging studies have suggested novel mechanisms underlying this association. These mechanisms involve P2X7 receptor-mediated NLRP3 inflammasome signaling, AMPK signaling, PD-L1 signaling, and satellite cell-mediated myogenesis. Furthermore, the modulation of PLP-dependent enzymes due to B6 deficiency is associated with impaired metabolic processes, affecting energy utilization, imidazole peptide production, and hydrogen sulfide production, as well as the kynurenine pathway, all of which play vital roles in skeletal muscle health and pathophysiology. This narrative review provides an up-to-date assessment of our current understanding of the potential role of nutritional B6 status in combating sarcopenia, frailty, and mortality.


Assuntos
Fragilidade , Sarcopenia , Adulto , Humanos , Idoso , Vitamina B 6 , Piridoxina , Envelhecimento
20.
Acta Diabetol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856757

RESUMO

AIMS: Streptozotocin (STZ) is widely used to study diabetic complications. Owing to the nonspecific cytotoxicity of high-dose STZ, alternative models using moderate-dose or a combination of low-dose STZ and a high-fat diet have been established. This study aimed to investigate the effects of these models on muscle function. METHODS: The muscle function of two STZ models using moderate-dose STZ (100 mg/kg, twice) and a combination of low-dose STZ and high-fat diet (50 mg/kg for 5 consecutive days + 45% high-fat diet) were examined using in vivo electrical stimulation. Biochemical and gene expression analysis were conducted on the skeletal muscles of the models immediately after the stimulation. RESULTS: The contractile force did not differ significantly between the models compared to respective controls. However, the moderate-dose STZ model showed more severe fatigue and blunted exercise-induced glycogen degradation possibly thorough a downregulation of oxidative phosphorylation- and vasculature development-related genes expression. CONCLUSIONS: Moderate-dose STZ model is suitable for fatigability assessment in diabetes and careful understanding on the molecular signatures of each model is necessary to guide the selection of suitable models to study diabetic myopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA