Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(14): 2588-2603.e9, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35588748

RESUMO

Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive. Herein, using ensemble and single-molecule techniques, we report that the sex chromosome-encoded RNA helicases DDX3X and DDX3Y are distinct in their propensities for liquid-liquid phase separation (LLPS), dissolution, and translation repression. We demonstrate that the N-terminal intrinsically disordered region of DDX3Y more strongly promotes LLPS than the corresponding region of DDX3X and that the weaker ATPase activity of DDX3Y, compared with DDX3X, contributes to the slower disassembly dynamics of DDX3Y-positive condensates. Interestingly, DDX3Y-dependent LLPS represses mRNA translation and enhances aggregation of FUS more strongly than DDX3X-dependent LLPS. Our study provides a platform for future comparisons of sex chromosome-encoded protein homologs, providing insights into sex differences in RNA metabolism and human disease.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Biossíntese de Proteínas , Proteínas/metabolismo , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(14): 7782-7791, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213595

RESUMO

The posttranscriptional modification of messenger RNA (mRNA) and transfer RNA (tRNA) provides an additional layer of regulatory complexity during gene expression. Here, we show that a tRNA methyltransferase, TRMT10A, interacts with an mRNA demethylase FTO (ALKBH9), both in vitro and inside cells. TRMT10A installs N1-methylguanosine (m1G) in tRNA, and FTO performs demethylation on N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) in mRNA. We show that TRMT10A ablation not only leads to decreased m1G in tRNA but also significantly increases m6A levels in mRNA. Cross-linking and immunoprecipitation, followed by high-throughput sequencing results show that TRMT10A shares a significant overlap of associated mRNAs with FTO, and these mRNAs have accelerated decay rates potentially through the regulation by a specific m6A reader, YTHDF2. Furthermore, transcripts with increased m6A upon TRMT10A ablation contain an overrepresentation of m1G9-containing tRNAs codons read by tRNAGln(TTG), tRNAArg(CCG), and tRNAThr(CGT) These findings collectively reveal the presence of coordinated mRNA and tRNA methylations and demonstrate a mechanism for regulating gene expression through the interactions between mRNA and tRNA modifying enzymes.


Assuntos
Adenosina/genética , Metiltransferases/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilação , Proteínas de Ligação a RNA/genética , tRNA Metiltransferases/genética
3.
Nat Struct Mol Biol ; 31(8): 1156-1166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39123067

RESUMO

The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.' The X chromosome-encoded homologs of these Y-encoded proteins are crucial players in several cellular processes, and their dysregulation frequently results in disease development. Many diseases related to these X-encoded homologs present with sex-biased incidence or severity. By contrast, comparatively little is known about the differential functions of the Y-linked homologs. Here, we summarize and discuss the current understanding of five of these X-Y paired proteins, with recent evidence of differential functions and of having a potential link to sex biases in disease, highlighting how amino acid-level sequence differences may differentiate their functions and contribute to sex biases in human disease.


Assuntos
Cromossomos Humanos X , Humanos , Cromossomos Humanos X/genética , Masculino , Feminino , Animais , Cromossomos Humanos Y/genética , Caracteres Sexuais , Cromossomos Sexuais/genética
4.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077005

RESUMO

DEAD-box helicases, which are crucial for many aspects of RNA metabolism, often contain intrinsically disordered regions (IDRs), whose functions remain unclear. Using multiparameter confocal microscopy, we reveal that sex chromosome-encoded homologous RNA helicases, DDX3X and DDX3Y, form nano-sized RNA-protein clusters (RPCs) that foster their catalytic activities in vitro and in cells. The IDRs are critical for the formation of these RPCs. A thorough analysis of the catalytic cycle of DDX3X and DDX3Y by ensemble biochemistry and single molecule photon bursts in the confocal microscope showed that RNA release is a major step that differentiates the unwinding activities of DDX3X and DDX3Y. Our findings provide new insights that the nano-sized helicase RPCs may be the normal state of these helicases under non-stressed conditions that promote their RNA unwinding and act as nucleation points for liquid-liquid phase separation under stress. This mechanism may apply broadly among other members of the DEAD-box helicase family.

5.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076929

RESUMO

Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying this impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and the catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.

6.
Methods Enzymol ; 626: 133-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31606073

RESUMO

Ribonucleic acid (RNA) is involved in translation and transcription, which are the mechanisms in which cells express genes (Alberts et al., 2002). The three classes of RNA discussed are transfer RNA (tRNA), messenger RNA (mRNA), and ribosomal RNA (rRNA). mRNA is the transcript encoded from DNA, rRNA is associated with ribosomes, and tRNA is associated with amino acids and is used to read mRNA transcripts to make proteins (Lodish, Berk, Zipursky, et al., 2000). Interestingly, the function of tRNA, rRNA, and mRNA can be significantly altered by chemical modifications at the co-transcriptional and post-transcriptional levels, and there are over 171 of these modifications identified thus far (Boccaletto et al., 2018; Modomics-Modified bases, 2017). Several of these modifications are linked to diseases such as cancer, diabetes, and neurological disorders. In this review, we will introduce a few RNA modifications with biological functions and how dysregulation of these RNA modifications is linked to human disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , 5-Metilcitosina/análise , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/metabolismo , Animais , Guanosina/análogos & derivados , Guanosina/análise , Guanosina/metabolismo , Humanos , Metilação , Conformação de Ácido Nucleico , Pseudouridina/análise , Pseudouridina/metabolismo , RNA Mensageiro/química , RNA Ribossômico/química , RNA de Transferência/química , Uridina/análogos & derivados , Uridina/análise , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA