Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Small ; 20(16): e2307246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039499

RESUMO

Perovskite solar cells (PSCs) with a booming high power conversion efficiency (PCE) are on their road toward industrialization. A proper design of the counter electrode (CE) with low cost, high conductivity, chemical stability, and good interface contact with the other functional layer atop the perovskite layer is vital for the overall performance of PSCs. Herein, the application of titanium nitride (TiN) is reported as a conductive medium for the printable CE in hole-conductor-free mesoscopic PSCs. TiN improves the conductivity of the CE and reduces the resistivity from 20 to 10 mΩ∙cm. TiN also improves the wettability of the CE with perovskite and enhances the back interface contact, which promotes charge collection. On the other hand, TiN is chemically stable during processing and undergoes no distinguishable chemical reaction with halide perovskite. Devices with TiN as the conductive media in the CE deliver a champion PCE of 19.01%. This work supplies a considerable choice for the CE design of PSCs toward industrial applications.

2.
New Phytol ; 241(4): 1690-1707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037276

RESUMO

Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.


Assuntos
Brassica napus , Brassica , Pequeno RNA não Traduzido , Brassica napus/genética , Brassica napus/metabolismo , Melhoramento Vegetal , Brassica/genética , Regiões Promotoras Genéticas/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Inorg Chem ; 63(13): 6033-6041, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38500387

RESUMO

We report the synthesis and structural characterization of a 2D metal-organic framework with AB-packing layers, [Co2(pybz)2(CH3COO)2]·DMF (Co2, pybz= 4-(4-pyridyl)benzoate), containing a stable (4,4)-grid network fabricated by paddle-wheel nodes, ditopic pybz, and acetate ligands. After removal of the guest, the layer structure is retained but reorganized into an ABCD packing mode in the activated phase (Co2a). Consequently, the intralayer square windows (7.2 × 5.0 Å2) close, while the interlayer separation is decreased slightly from 3.69 to 3.45 Å, leaving a narrow gap. Importantly, the dangling methyl group of the acetate with H-bonds to the adjacent layers and also the well-distributed π-π interactions between the aromatic rings of neighboring layers facilitate the structural stability. These weak supramolecular interactions further allow for favorable dynamic exfoliation of the layers, which promotes efficient adsorption of C2H2 (41.6 cm3 g-1) over CO2 with an adsorption ratio of 6.3 (0.5 bar, 298 K). The effective separation performance of equimolar C2H2/CO2 was verified by cycling breakthrough experiments and was even tolerable to moisture (R.H = 52%). DFT calculations, in situ PXRD, and PDF characterization reveal that the favorable retention of C2H2 rather than that of CO2 is due to its H-bond formation with the paddle-wheel oxygen atoms that triggers the increase in interlayer separation during C2H2 adsorption.

4.
Appl Opt ; 63(15): 4219-4225, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856516

RESUMO

We propose a method using electromagnetically induced transparency (EIT) to measure the frequency offset of the laser relative to a cavity's resonance frequency, thereby reducing the laser detuning when preparing Rydberg atoms. Laser reflection by the vapor cell enables observation of two EIT peaks corresponding to the co-propagating and counter-propagating beams, and the peaks' position is related to laser detuning, allowing us to estimate the frequency offset of the probe and coupling lasers. The method reduces the measurement uncertainty compared to directly observing saturated absorption spectroscopy (SAS) and EIT, making it suitable for applications that require strict control over laser detuning.

5.
Gen Physiol Biophys ; 43(2): 153-162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477605

RESUMO

Endothelial damage caused by persistent glucose and lipid metabolism disorders is the main reason of diabetic vascular diseases. Daidzein exerts positive effects on vascular dysfunction. Peroxisome proliferator-activated receptors (PPARs) regulate critically glucose and lipid metabolism. However, the interaction of daidzein to PPARs is still insufficiently explored. In this study, the cell proliferation was detected by EdU. The intrinsic activity and binding affinity of daidzein for human PPARs (hPPARs) were estimated by transactivation reporter gene test and HPLC-UV method, respectively. Daidzein significantly reversed high glucose (HG, at 30 mmol/l)-induced injury in HUVECs, which was inhibited by both PPARα and PPARγ antagonist, but no PPARß antagonist. Daidzein selectively activated hPPARα and hPPARγ1, but weakly hPPARß. Additionally, daidzein also bound to both hPPARα and hPPARγ1. The findings suggested that daidzein may be a PPARα and PPARγ dual-agonist. The amelioration of daidzein on HUVECs from hyperglycemia may be mediated by the activation of PPARα and PPARγ receptors.


Assuntos
Isoflavonas , PPAR alfa , PPAR gama , Humanos , PPAR alfa/metabolismo , Células Endoteliais , Glucose
6.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793837

RESUMO

A typical magnetometer-based measurement-while-drilling (MWD) system determines the azimuth of the bottom hole assembly during the drilling process by employing triaxial accelerometers and magnetometers. The geomagnetic azimuth solution is susceptible to magnetic interference, especially strong magnetic interference and so a rotary norm constraint filtering (RNCF) method for azimuth estimation, designed to support a gyroscope-aided magnetometer-based MWD system, is proposed. First, a new magnetic dynamical system, one whose output is observed by the magnetometers triad, is designed based on the Coriolis equation of the desired geomagnetic vector. Second, given that the norm of the non-interfered geomagnetic vector can be approximated as a constant during a short-term drilling process, a norm constraint procedure is introduced to the Kalman filter. This is achieved by the normalization of the geomagnetic part of the state vector of the dynamical system and is undertaken in order to obtain a precise geomagnetic component. Simulation and actual drilling experiments show that the proposed RNCF method can effectively improve the azimuth measurement precision with 98.5% over the typical geomagnetic solution and 37.1% over the KF in a RMSE sense when being strong magnetic interference environment.

7.
BMC Genomics ; 24(1): 499, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644462

RESUMO

This paper aims to explore the role of circRNA expression profiles and circRNA-associated ceRNA networks in the regulation of myogenesis in the longissimus dorsi of cattle breeds surviving under subtropical conditions in southern China by RNA sequencing and bioinformatics analysis. It also aims to provide comprehensive understanding of the differences in muscle fibers in subtropical cattle breeds and to expand the knowledge of the molecular networks that regulate myogenesis. With regard to meat quality indicators, results showed that the longissimus dorsi of LQC had lower pH (P < 0.0001), lower redness (P < 0.01), lower shear force (P < 0.05), and higher brightness (P < 0.05) than the longissimus dorsi of LFC. With regard to muscle fiber characteristics, the longissimus dorsi of LQC had a smaller diameter (P < 0.0001) and higher density of muscle fibers (P < 0.05). The analysis results show that the function of many circRNA-targeted mRNAs was related to myogenesis and metabolic regulation. Furthermore, in the analysis of the function of circRNA source genes, we hypothesized that btacirc_00497 and btacirc_034497 may regulate the function and type of myofibrils by affecting the expression of MYH6, MYH7, and NEB through competitive linear splicing.


Assuntos
Biologia Computacional , RNA Circular , Animais , Bovinos/genética , China , Carne , Músculos Paraespinais
8.
Plant Cell Environ ; 46(4): 1087-1103, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36478590

RESUMO

Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.


Assuntos
Oryza , Oryza/fisiologia , Resposta ao Choque Térmico , Temperatura Alta , Reprodução , Grão Comestível
9.
Microvasc Res ; 148: 104531, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36963481

RESUMO

In diabetes mellitus (DM), high glucose can result in endothelial cell injury, and then lead to diabetic vascular complications. Gastrodin, as the mainly components of Chinese traditional herb Tianma (Gastrodia elata Bl.), has been widely used for cardiovascular diseases. However, the known of the effect of gastrodin on endothelial cell injury is still limited. In this study, we aimed to investigate the effect and possible mechanism of gastrodin on high glucose-injured human umbilical vein endothelial cells (HUVEC). High glucose (30 mmol/L) treatment caused HUVEC injury. After gastrodin (0.1, 1, 10 µmol/L) treatment, compared with the high glucose group, the cell proliferation ability increased in a dose-dependent manner. Meanwhile, gastrodin (10 µmol/L) up-regulated the mRNA and protein expressions of PPARß and eNOS, decreased the expressions of iNOS, also reduced the protein expression of 3-nitrotyrosine, and lowed the level of ONOO-, increased NO content. Both the PPARß antagonist GSK0660 (1 µmol/L) and the eNOS inhibitor L-NAME (10 µmol/L) were able to block the above effects of gastrodin. In conclusion, gastrodin protectes vascular endothelial cells from high glucose injury, which may be, at least partly, mediated by up-regulating the expression of PPARß and negatively regulating nitrative stress.


Assuntos
PPAR beta , Humanos , PPAR beta/metabolismo , Regulação para Cima , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glucose/toxicidade , Glucose/metabolismo
10.
Chemistry ; 29(64): e202301677, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548093

RESUMO

Dimension growth of metal halides is important for its properties and applications. However, such dimension control of the metal halides is rarely reported in the literature and the growth mechanism is not clear yet. A minute difference of solvent properties can tremendously alter the process of nucleation and growth of crystals. Herein, an intriguing phenomenon of dimension tuning for Ag-based metal halides is reported. The 1D Cs2 AgCl3 crystals can be obtained in pure DMF while the 2D CsAgCl2 crystals are obtained in pure DMSO. Both exhibit bright yellow emission, which are derived from self-trapping excitons (STEs). The photoluminescence quantum yield (PLQY) of Cs2 AgCl3 (1D) and CsAgCl2 (2D) are 28.46 % and 20.61 %, respectively. In order to understand the mechanism of the dimension change, additional solvents (N,N-dimethylacetamide, DMAC, 1,3-Dimethyl-Tetrahydropyrimidin-2(1H)-one, DMPU) are also selected to process the precursor for crystal growth. By comparing the functional group, dielectric constant, and donor number among the four solvents, we find the donor number plays the predominant role in nucleation process for Cs2 AgCl3 and CsAgCl2 . This research reveals the relationship between coordination ability of the solvent and the dimension of metal halides.

11.
Med Sci Monit ; 29: e940157, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632137

RESUMO

BACKGROUND Immune checkpoint inhibitor (ICI) therapy has attracted wide attention in the treatment of malignant tumors. This study was designed to build a prognostic model based on immune-related genes for esophageal adenocarcinoma (EAC). MATERIAL AND METHODS The expression of immune-related differentially-expressed genes (IRDEGs) between EAC and normal samples from The Cancer Genome Atlas database was analyzed. Univariate and multivariate Cox regressions were used to identify the prognostic IRDEGs and construct an immune-related gene signature (IRGS) to predict the overall survival (OS) of EAC patients. Then, the molecular mechanisms and immune characteristics were comprehensively analyzed. RESULTS A total of 111 IRDEGs were obtained from the weighted gene co-expression network analysis. Univariate Cox regression analysis showed that 12 IRDEGs (P<0.05 for all) were linked with OS in the EAC patients. Four genes were used to construct the IRGS based on the multivariate Cox regression analysis. Patients in the high-risk group showed worse OS than those in the low-risk group (P<0.001). A high-risk score was related to DNA replication relevant pathways, an increase in mutation rate, and an increase in activated mast cell infiltration. Patients with high-risk scores had lower tumor immune dysfunction and exclusion scores (P<0.001). CONCLUSIONS IRDEGs may be involved in the progression of EAC. The high-risk group is more suitable for immunotherapy, which may provide a reference value for the treatment of clinical EAC patients. Therefore, it is possible to identify the patients who are better suited for ICI therapy.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Imunoterapia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Perfilação da Expressão Gênica
12.
Behav Cogn Psychother ; 51(1): 32-45, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36278480

RESUMO

BACKGROUND: Although attentional bias modification training (ABM) and cognitive behavioural therapy (CBT) are two effective methods to decrease the symptoms of generalized anxiety disorders (GAD), to date, no randomized controlled trials have yet evaluated the effectiveness of an intervention combining internet-based cognitive behavioural therapy (ICBT) and ABM for adults with GAD. AIMS: This study aimed to investigate the effectiveness of an intervention combining ICBT and ABM for adults with GAD. METHOD: Sixty-three participants diagnosed with GAD were randomly assigned to the treatment group (ICBT with ABM; 31 participants) or the control group (ICBT with ABM placebo; 32 participants), and received 8 weeks of treatment and three evaluations. The CBT, ABM and ABM-placebo training were conducted via the internet. The evaluations were conducted at baseline, 8 weeks later, and 1 month later, respectively. RESULTS: Both the treatment and control groups reported significantly reduced anxiety symptoms and attentional bias, with no clear superiority of either intervention. However, the treatment group showed a greater reduction in negative automatic thoughts than the control group after treatment and at 1-month follow-up (η2 = 0.123). CONCLUSION: The results suggest that although not differing in therapeutic efficacy, the intervention combining ICBT and ABM is superior to the intervention combining ICBT and ABM-placebo in the reduction of negative automatic thoughts. ABM may be a useful augmentation of ICBT on reducing anxiety symptoms.


Assuntos
Transtornos de Ansiedade , Terapia Cognitivo-Comportamental , Humanos , Transtornos de Ansiedade/terapia
13.
Plant Cell Physiol ; 63(5): 580-591, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35141744

RESUMO

The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Cloroplastos/metabolismo , Fotossíntese/fisiologia , Plantas/genética , Plantas/metabolismo , Temperatura
14.
Microvasc Res ; 139: 104272, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699845

RESUMO

Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor ß (PPARß) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARß in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARß and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARß agonist. Both GSK0660 (PPARß antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARß in high glucose-impaired endothelial function in rat aorta. PPARß-nitrative stress may hold potential in treating vascular complications from DM.


Assuntos
Aorta Torácica/efeitos dos fármacos , Angiopatias Diabéticas/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucose/toxicidade , Hiperglicemia/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , PPAR beta/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Hiperglicemia/genética , Hiperglicemia/patologia , Hiperglicemia/fisiopatologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , PPAR beta/genética , Ratos Sprague-Dawley , Transdução de Sinais , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasodilatação/efeitos dos fármacos
15.
Cancer Cell Int ; 22(1): 177, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501914

RESUMO

BACKGROUND: Breast cancer is notorious for its increasing incidence for decades. Ascending evidence has demonstrated that translocase of inner mitochondrial membrane (TIMM) proteins play vital roles in progression of several types of human cancer. However, the biological behaviors and molecular mechanisms of TIMM8A in breast cancer remain not fully illustrated. METHODS: Pan-cancer analysis was firstly performed for TIMM8A's expression and prognosis by Oncomine database. Subsequently, TIMM8A-related noncoding RNAs (ncRNAs) were identified by a series of bioinformatics analyses and dual-luciferase reporter assay, including expression analysis, correlation analysis, and survival analysis. Moreover, the effect of TIMM8A on breast cancer proliferation and apoptosis was evaluated in vitro by CCK-8 assays, EdU cell proliferation assays, JC-1 mitochondrial membrane potential detection assays and Western blot assays and the in vivo effect was revealed through a patient-derived xenograft mouse model. RESULTS: We found that TIMM8A showed higher expression level in breast cancer and the higher TIMM8A mRNA expression group had a poorer prognosis than the lower TIMM8A group. hsa-circ-0107314/hsa-circ-0021867/hsa-circ-0122013 might be the three most potential upstream circRNAs of hsa-miR-34c-5p/hsa-miR-449a-TIMM8A axis in breast cancer. TIMM8A promotes proliferation of breast cancer cells in vitro and tumor growth in vivo. CONCLUSION: Our results confirmed that ncRNAs-mediated upregulation of TIMM8A correlated with poor prognosis and act as an oncogene in breast cancer.

16.
Prostaglandins Other Lipid Mediat ; 159: 106620, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091081

RESUMO

Cardiac hypertrophy is a key structural change in diabetic cardiomyopathy, which mechanism is unknown. 14,15-Epoxyeicosatrienoic acid (14,15-EET) generated from arachidonic acid by CYP2J2 has beneficial effects in metabolic syndrome, which also plays vital roles in inflammatory response. Peroxisome proliferator activated receptors (PPARs) are members of the nuclear receptor superfamily and have three subtypes of α, ß (or δ) and γ. Studies have found that 14,15-EET can perform various biological functions by activating PPARs, but its role in diabetic cardiac hypertrophy is unknown. This study aimed to investigate the role of 14,15-EET-PPARs signaling pathway in the development of diabetic cardiac hypertrophy. Diabetic cardiac hypertrophy was developed by high-fat diet feeding combined with streptozotocin (40 mg/kg/d for 5 days, i.p.) in mice and was induced by glucose at 25.5 mmol/L (high glucose, HG) in H9c2 cells. The decreased level of 14,15-EET and the down-regulated expression of PPARα, PPARß and PPARγ were found following diabetic cardiac hypertrophy in mice. Similarly, both the level of 14,15-EET and the PPARs expression were also reduced in HG-induced hypertrophic cardiomyocytes. Supplementation with 14,15-EET improved the cardiomyocyte hypertrophy and up-regulated PPARs expression, which were nullified by 14,15-EEZE, a 14,15-EET antagonist. Taken together, we conclude that the decreased 14,15-EET is involved in the development of diabetic cardiac hypertrophy through the down-regulation of PPARs.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Animais , Cardiomegalia/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Glucose/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo
17.
Environ Toxicol ; 37(8): 2072-2083, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524977

RESUMO

Doxorubicin-induced cardiomyopathy (DCM) is a life-threatening event. The long noncoding RNAs (lncRNAs) have been reported with close associations with DCM, which may provide novel insight into pathophysiological mechanisms of DCM. DCM rat model and cell models were established using doxorubicin. Echocardiography analyses were performed to assess cardiac function. We found that testis developmental-related gene 1 (TDRG1) expression was upregulated in DCM rats and in doxorubicin-treated human umbilical vein endothelial cells (HUVECs). TDRG1 knockdown enhanced cell viability, promoted tube formation, and inhibited apoptosis of doxorubicin-treated HUVECs. Additionally, knockdown of TDRG1 alleviated cardiac injury in DCM rats. Mechanistically, miR-873-5p was identified to bind with TDRG1. In addition, protein kinase cAMP-dependent type II regulatory subunit alpha (PRKAR2) was confirmed to bind with miR-873-5p as a target mRNA. MiR-873-5p negatively regulated PRKAR2 mRNA and protein levels. At last, rescue assays indicated that the overexpression of PRKAR2 restored the effect of TDRG1 knockdown on doxorubicin-treated HUVEC angiogenesis and apoptosis. To conclude, TDRG1 aggravates DCM progression by binding with miR-873-5p to upregulate PRKAR2. This work suggested the potential of TDRG1 as a target for DCM treatment.


Assuntos
Cardiomiopatias , MicroRNAs , RNA Longo não Codificante , Animais , Apoptose/genética , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Doxorrubicina , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Ratos , Testículo/metabolismo
18.
Environ Toxicol ; 37(4): 683-694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34862716

RESUMO

BACKGROUND: Coronary atherosclerosis (AS) is characterized by the formation of plaque in the vessel wall. The structural and functional changes of vascular smooth muscle cells (VSMCs) can promote plaque formation and induce plaque instability. OBJECTIVE: To investigate the functions and mechanism of miR-222-5p in VSMCs under the treatment of oxidized low-density lipoprotein (ox-LDL). METHODS: miR-222-5p expression in ox-LDL-treated VSMCs and the serum of Apolipoprotein E (ApoE) knockout mice was detected by reverse transcription quantitative polymerase chain reaction. The viability and migration of VSMCs were detected by Cell Counting Kit-8 and Transwell assays. Protein levels of proliferation and migration-related factors were evaluated by western blotting. Luciferase reporter assays were performed to explore the binding between miR-222-5p and retinoblastoma susceptibility protein (RB1) gene in VSMCs. ApoE-knockout mice were infected with the lentivirus inhibiting miR-222-5p expression to explore the effect of miR-222-5p on pathological changes. Hematoxylin and eosin (H&E) staining, trichrome staining, and Oil Red O staining were conducted to determine the necrotic core area and atherosclerotic lesion size in the ascending aorta of ApoE-knockout mice. RESULTS: With the accumulation of ox-LDL concentration and treatment time, miR-222-5p expression was gradually upregulated in VSMCs. Similarly, miR-222-5p expression was increased in the serum of ApoE-knockout mice. miR-222-5p knockdown inhibited the proliferative and migratory abilities of ox-LDL-treated VSMCs, and the inhibitory effect on cellular behaviors was then significantly reversed by co-knockdown of RB1. RB1 is a downstream target gene of miR-222-5p, and miR-222-5p bound with 3'-untranslated region of RB1 in VSMCs. We further confirmed that miR-222-5p knockdown alleviated pathological changes and inhibited lipid deposition in the serum of ApoE-knockout mice in vivo. CONCLUSION: miR-222-5p accelerates the dysfunction of VSMCs and promotes pathological changes and lipid deposition in ApoE-knockout mice by targeting RB1. The study may provide novel therapeutic targets for AS.


Assuntos
MicroRNAs , Músculo Liso Vascular , Proteínas de Ligação a Retinoblastoma , Animais , Movimento Celular , Proliferação de Células , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/fisiologia , Músculo Liso Vascular/fisiopatologia , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
19.
Nano Lett ; 21(16): 6764-6772, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34342999

RESUMO

Magnetic-based theranostics feature a high efficiency, excellent tissue penetration, and minimal damage to normal tissues, are noninvasive, and are widely used in the diagnosis and therapy of clinical diseases. Herein, a conceptually novel magnetostrictive-piezoelectric nanocatalytic medicine (MPE-NCM) for tumor therapy is proposed by initiating an intratumoral magneto-driven and piezoelectric-catalyzed reaction using core-shell structured CoFe2O4-BiFeO3 magnetostrictive-piezoelectric nanoparticles (CFO-BFO NPs) under an alternating magnetic field. The CFO-BFO NPs catalyze the generation of cytotoxic reactive oxygen species (ROS): superoxide radicals (•O2-) and hydroxyl radicals (•OH). The simulation calculation demonstrates the highly controllable electric polarization, facilitating the above catalytic reactions under the magnetic stimulation. Both a detailed cell-level assessment and the tumor xenograft evaluation evidence the significant tumor eradication efficacy of MPE-NCM. This study proposes an original and novel magneto-responsive nanocatalytic modality for cancer therapy, which displays promising prospects for the future clinic translation owing to its excellent catalytic dynamic responsiveness, high therapeutic efficacy, and biosafety in vivo.


Assuntos
Peróxido de Hidrogênio , Fototerapia , Catálise , Linhagem Celular Tumoral , Radical Hidroxila
20.
Small ; 17(8): e2006599, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522150

RESUMO

Invoking the occurrence of pyroptosis is an emerging strategy for the treatment of cancer. However, the practical applications of pyroptosis for cancer therapy are currently hindered due to the lack of tumor-specific and efficient pyroptotic agents in vivo. Herein, a virus-spike tumor-activatable pyroptotic agent (VTPA) for cancer-specific therapy is reported. The VTPA is composed of an organosilica coated iron oxide nanoparticle core and spiky manganese dioxide protrusions, which can readily accumulate in tumor after systemic administration, facilitate the tumor intracellular lysosomal rupture, and be degraded by tumor over-expressed intracellular glutathione (GSH) to release Mn ions and iron oxide nanoparticles (IONPs) for the synergetic activation of nucleotide binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasomes. Consequently, the activation of NLRP3 inflammasomes and the release of lactate dehydrogenase of tumor cells are observed after the treatment of VTPA, resulting in a specific pyroptotic cell death. To our best knowledge, the structure-dependent and tumor intracellular GSH activatable pyroptotic agents represent the first demonstration of cancer-specific pyroptosis in vivo, providing a novel paradigm for the development of next-generation cancer-specific pyroptotic nanomedicine.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteínas de Transporte , Caspase 1/metabolismo , Inflamassomos/metabolismo , Lisossomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA