Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; : 1-10, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768129

RESUMO

Strain YJY-8, a new γ-polyglutamic acid producer, was separated from fermented soybean paste samples. The strain was identified as a genus of Bacillus by morphological and 16S rDNA sequence analysis and was named Bacillus sp. YJY-8. The optimal medium composition and cultural conditions were studied using a single-factor experiment and a response surface experiment. The optimized medium consisted of monosodium glutamate 70 g/L, glucose 54.3 g/L, glycerol 31.8 g/L, ammonium sulfate 11.1 g/L, yeast extract 3.2 g/L, tryptone 1.5 g/L, L-glutamic acid 6.8 g/L, MgSO4 7H2O 0.5 g/L, FeCl3 6H2O 0.02 g/L, KH2PO4 0.9 g/L, CaCl2 0.03 g/L, MnSO4 H2O 0.3 g/L, ammonium molybdate 0.02 g/L, pH 7.0. The optimal cultivation conditions were 35 °C and pH 7.0. Under the optimized conditions, after 48 hr of cultivation, the highest shaking flask fermentation level of γ-PGA reached 65.2 ± 0.36 g/L. In addition, through fed-batch fermentation in 30 L fermenters, the fermentation level of γ-PGA reached its highest level at 88.42 g/L and productivity was 1.23 g/(L hr) after 72 hr. Then, the effect of γ-PGA on tomato yield was investigated. At the seedling stage, the plant height and stem diameter of γ-PGA treated plants increased by 5.69 and 15.735% after spraying γ-PGA for 19 days. During the flowering and fruiting period, the stem diameter of the γ-PGA treatment group increased by 6.74%, with a maximum increase of 11.65%. The number of fruit branches increased by 0.56-16.29% and the number of fruit sets increased by 1.01-28.47%. At the fruit maturation stage, the yield of tomatoes increased by 10.51, 14.27, and 5.83%.

2.
Prep Biochem Biotechnol ; 52(7): 789-799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34747342

RESUMO

In this study, a high protease-producing strain was screened by spread plate method and identified by molecular biology and morphological identification. It was identified as Bacillus sp. LCB14. A neutral protease gene was cloned and heterologous expressed by B. subtilis SCK6. Then, the recombinant protease was used to dehair the goat skins. The fermentation conditions of neutral protease production by B. subtilis SCK6 were optimized. The single factor experiments, Plackett-Burma experiment, and response surface method were conducted to determine fermentation medium and culture conditions. The optimized medium contained corn meal 49 g/L, soluble starch 28 g/L, soybean meal 17 g/L, corn steep liquor powder 8 g/L, yeast extract 10 g/L, Na2HPO4 2.3 g/L, KH2PO4 1.9 g/L, MgSO4 0.5 g/L, MnCl2 0.1 g/L and ZnSO4 0.05 g/L. The optimized culture conditions were 35 °C and pH 7.0. Under the optimum conditions, the recombinant strain reached 33467.28 U/mL after 72 hr ferment. Moreover, by fed batch in 30 L fermenters, neutral protease production reached 39,440.78 U/mL and shortened fermentation time from 72 hr to 46 hr. Finally, the crude enzyme was utilized to replace sodium sulfide for dehairing of goatskins. The enzymatic dehaired pelts were white, smooth, and soft; the grain side of enzymatic dehaired pelts were clear; there was no obvious damage to the grain side of enzymatic dehaired pelts by visual observation and tactile test. Furthermore, there were no hair roots, hair follicles and other glands in enzymatic dehaired belts, and the collagen fibers of enzymatic dehaired belt were dispersed well by histological analysis.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Meios de Cultura , Endopeptidases/metabolismo , Fermentação , Metaloproteases , Peptídeo Hidrolases/metabolismo
3.
Bioresour Technol ; 387: 129664, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37573975

RESUMO

Microbial-mediated sulfur metabolism is closely related to carbon and nitrogen metabolism in natural biological systems. In this study, the effects of sulfur metabolism on microbial communities and functional enzyme succession were investigated based on integrated multi-omics by adding sulfur-containing compounds to aerobic fermentation systems. Sulfur powder was oxidized to S2O32- and subsequently to SO42- by the microbial sulfur-oxidizing system, which lowered the pH to 7.5 on day 7. The decrease in pH resulted in Planifilum (secreted S8, M17 and M32 proteases) losing its competitive advantage, whereas Novibacillus (secreted M14 and M19 metalloproteases) became dominant. Structural proteomics indicated that the surface of Novibacillus proteases has more negatively charged amino acid residues that help maintain protein stability at low pH. These findings aid understanding of the effects of sulfur metabolism on fermentation and the mechanism of microbial adaptation after pH reduction, providing new perspectives on the optimization of fermentation processes.


Assuntos
Microbiota , Multiômica , Fermentação , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA