Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int Arch Allergy Immunol ; : 1-14, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897183

RESUMO

INTRODUCTION: Artemisia species are widely spread in north hemisphere. Artemisia sieversiana pollen is one of the common pollen allergens in the north of China. At present, seven allergens were identified and had been listed officially from A. sieversiana pollen, but the remaining allergens are still insufficiently studied, which need to be found. METHODS: Pectate lyase was purified from the extracts of A. sieversiana pollen by anion exchange, size exclusion, and HPLC-hydrophobic interaction chromatography. The gene of A. sieversiana pectate lyase (Art si pectate lyase) was cloned and expressed in Escherichia coli. The enzyme activity and circular dichroism (CD) spectrum of natural and recombinant proteins were analyzed. The allergenicity of Art si pectate lyase was characterized by enzyme-linked immunosorbent assay (ELISA), Western blot, inhibition ELISA, and basophil activation test. The allergen's physicochemical properties, three-dimensional structure, sequence profiles with homologous allergens and phylogenetic tree were analyzed by in silico methods. RESULTS: Natural Art si pectate lyase (nArt si pectate lyase) was purified from A. sieversiana pollen extracts by three chromatographic strategies. The cDNA sequence of Art si pectate lyase had a 1191-bp open reading frame encoding 396 amino acids. Both natural and recombinant pectate lyase (rArt si pectate lyase) exhibited similar CD spectrum, and nArt si pectate lyase had higher enzymatic activity. Moreover, the specific immunoglobulin E (IgE) binding rate against nArt si pectate lyase and rArt si pectate lyase was determined as 40% (6/15) in patients' serum with Artemisia species pollen allergy by ELISA. The nArt si pectate lyase and rArt si pectate lyase could inhibit 76.11% and 47.26% of IgE binding activities to the pollen extracts, respectively. Art si pectate lyase was also confirmed to activate patients' basophils. Its structure contains a predominant motif of classic parallel helical core, consisting of three parallel ß-sheets, and two highly conserved features (vWiDH, RxPxxR) which may contribute to pectate lyase activity. Moreover, Art si pectate lyase shared the highest sequence identity of 73.0% with Art v 6 among currently recognized pectate lyase allergen, both were clustered into the same branch in the phylogenetic tree. CONCLUSION: In this study, pectate lyase was identified and comprehensively characterized as a novel allergen in A. sieversiana pollen. The findings enriched the allergen information for this pollen and promoted the development of component-resolved diagnosis and molecular therapy of A. sieversiana pollen allergy.

2.
Int Arch Allergy Immunol ; : 1-13, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047720

RESUMO

INTRODUCTION: Recombinant allergens produced by Escherichia coli (E. coli) system play an important role in the component-resolved diagnostics of allergy and vaccine development. However, incorrect folding of recombinant allergens may affect their application. Therefore, it is very important to monitor the correct folding of recombinant allergens. Currently, there is still a lack of a quality control strategy to solve this problem. In this study, a mite allergen, Der f 2, was taken as an example to establish a novel quality control strategy, which was based on chromatography to isolate the allergen, and on enzyme-linked immunosorbent assay to verify the IgE reactivity of the isolated allergen. METHODS: The nucleotide sequence encoding Der f 2 was codon-optimized and cloned into pET-28a (+) plasmid. Best conditions for the expression of Der f 2 in E. coli were sought. The inclusion body of Der f 2 was denatured and purified by nickel affinity chromatography. Refolding processes were compared using glutathione redox system. The fully and partially folded proteins were separated by anion exchange chromatography, and the IgE reactivity of the isolated proteins was verified by indirect enzyme-linked immunosorbent assay. RESULTS: An optimized 387 bp segment of the Der f 2 coding gene was successfully expressed in E. coli. Best induction conditions included preinduction bacterial density with absorbance value at 600 nm was 0.6, 1 mM isopropyl beta-d-thiogalactopyranoside at 28°C for 4 h. The Der f 2 protein after refolding was separated by chromatography and two fractions were obtained. The first fraction was identified as monomer protein and the second as aggregate by size-exclusion chromatography. Indirect enzyme-linked immunosorbent assay also confirmed that the first fraction showed higher IgE reactivity. CONCLUSION: In this study, a novel quality control strategy based on chromatographic separation and IgE reactivity monitoring was established in the case of mite Der f 2, which systematically evaluated the effectiveness of multiple preparation methods for the first time. It is faster and more convenient when compared with the existing methods such as size-exclusion chromatography. This strategy laid a foundation for the stable application of recombinant allergens produced by E. coli in component-resolved diagnostics and the development of molecular vaccines in the future.

3.
J Environ Manage ; 278(Pt 2): 111539, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157465

RESUMO

The persulfate activation by nanosecond pulsed gas-liquid discharge (NPG-LD) is employed to degrade the trimethoprim (TMP) in water. The results show that persulfate addition enhances the degradation of TMP by NPG-LD through an obvious synergetic effect. With treatment time of 50 min, the high removal efficiency and energy yield reach 94.6% and 0.57 gkWh-1 in air NPG-LD with the addition of persulfate, respectively, which is 13.5% and 0.09 gkWh-1 higher than that in solo air NPG-LD, respectively. Correspondingly, the calculated synergetic factor achieves 1.62, indicating the synergetic effect is established. The activation mechanism of persulfate by NPG-LD is analyzed by the measurement of reactive species and the effects of radical scavenger addition on TMP removal. It is found that the synergetic effect between NPG-LD and persulfate is attributed to the increased production of OH, H2O2, and . Besides, the TMP degradation by NPG-LD and persulfate synergetic system is influenced by discharge working gas, pulse voltage, addition dosage of persulfate, initial TMP concentration, and initial pH value. Subsequently, the degradation pathway of TMP is analyzed using LC-MS/MS.


Assuntos
Trimetoprima , Poluentes Químicos da Água , Cromatografia Líquida , Peróxido de Hidrogênio , Oxirredução , Plasma/química , Sulfatos , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise
4.
Angew Chem Int Ed Engl ; 59(1): 203-208, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31663271

RESUMO

Two-dimensional (2D) hybrid perovskites have shown many attractive properties associated with their soft lattices and multiple quantum well structure. Herein, we report the synthesis and characterization of two new multifunctional 2D hybrid perovskites, (PED)CuCl4 and (BED)2 CuCl6 , which show reversible thermochromic behavior, dramatic temperature-dependent conductivity change, and strong ferromagnetism. Upon temperature change, the (PED)CuCl4 and (BED)2 CuCl6 crystals exhibit a reversible color change between yellow and red-brown. The associated structural changes were monitored by in situ temperature-dependent powder X-ray diffraction (PXRD). The (BED)2 CuCl6 exhibits superior thermal stability, with a thermochromic working temperature up to 443 K. The conductivity of (BED)2 CuCl6 changes over six orders of magnitude upon temperature change. The 2D perovskites exhibit ferromagnetic properties with Curie temperatures around 13 K.

5.
J Chem Phys ; 140(20): 204701, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24880305

RESUMO

Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

6.
Nat Commun ; 15(1): 1013, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307850

RESUMO

Through pumping a spin current from ferromagnet into heavy metal (HM) via magnetization precession, parts of the injected spins are in-plane rotated by the lattice vibration, namely acoustic spin rotation (ASR), which manifests itself as an inverse spin Hall voltage in HM with an additional 90° difference in angular dependency. When reversing the stacking order of bilayer with a counter-propagating spin current or using HMs with an opposite spin Hall angle, such ASR voltage shows the same sign, strongly suggesting that ASR changes the rotation direction due to interface spin-orbit interaction. With the drift-diffusion model of spin transport, we quantify the efficiency of ASR up to 30%. The finding of ASR endows the acoustic device with an ability to manipulate spin, and further reveals a new spin-orbit coupling between spin current and lattice vibration.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(1): 40-3, 2013 Jan.
Artigo em Zh | MEDLINE | ID: mdl-23586220

RESUMO

In the present study, dielectric barrier homogenous discharge in nitrogen was obtained between large plate electrodes (150 x 300 mm) at atmospheric pressure and the emission spectra of N2 (C3pi(u) --> B3 pi(g)) and N2+ (B2 sigma(u)+ --> X2 sigma(g)+ 0-0 391.4 nm) were recorded. It was found that both the emission intensities of N2 (C3 pi(u) --> B3 pi(g) and N2+ (B2 sigma(u)+ --> X2 sigma(g)+ 0-0 391.4 nm) increase with the rising of the applied voltage and the driving frequency, respectively. The main physicochemical formation mechanism of N2+ (B2 sigma(u)+) in N2 and He+N2 mixtures homogenous discharge was discussed, and the penning ionization was proved to be the dominant formation mechanism.

8.
Adv Mater ; 35(42): e2303945, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487594

RESUMO

Ferromagnetic semiconductors (FMS) enable simultaneous control of both charge and spin transport of charge carriers, and they have emerged as a class of highly desirable but rare materials for applications in spin field-effect transistors and quantum computing. Organic-inorganic hybrid perovskites with high compositional adjustability and structural versatility can offer unique benefits in the design of FMS but has not been fully explored. Here, a series of molecular FMSs based on the 2D organic-inorganic hybrid perovskite structure, namely (2ampy)CuCl4 , (3ampy)CuCl4 , and (4ampy)CuCl4 , is demonstrated, which exhibits high saturation magnetization, dramatic temperature-dependent conductivity change, and tunable ferromagnetic resonance. Magnetic measurements reveal a high saturation magnetization up to 18.56 emu g-1 for (4ampy)CuCl4 , which is one of the highest value among reported hybrid FMSs to date. Conductivity studies of the three FMSs demonstrate that the smaller adjacent octahedron distance in the 2D layer results in higher conductivity. Systematic ferromagnetic resonance investigation shows that the gyromagnetic ratio and Landau factor values are strongly dependent on the types of organic cations used. This work demonstrates that 2D hybrid perovskite materials can simultaneously possess both tunable long-range ferromagnetic ordering and semiconductivity, providing a straightforward strategy for designing and synthesizing high-performance intrinsic FMSs.

9.
Front Microbiol ; 14: 1264000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876784

RESUMO

Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production causing significant crop losses and impacting grain quality. The annual loss of rice production due to this disease ranges from 10% to 30%. The use of biologically controlled strains, instead of chemical pesticides, to control plant diseases has become a research hotspot. In this study, an antagonistic endophytic bacterial strain was isolated from the roots of Oryza officinalis using the traditional isolation and culture methods. A phylogenetic tree based on 16S RNA and whole-genome sequencing identified isolate G5 as a strain of Bacillus subtilis. This isolate displayed strong antagonistic effects against different physiological strains of M. oryzae. After co-culture in LB medium for 7 days, the inhibition rates of the mycelial growth of four strains of M. oryzae, ZB15, WH97, Guy11, and T-39800E were 98.07 ± 0.0034%, 98.59 ± 0.0051%, 99.16 ± 0.0012%, and 98.69 ± 0.0065%, respectively. Isolate G5 significantly inhibited the formation of conidia of M. oryzae, with an inhibition rate of 97% at an OD600 of 2. Isolate G5 was able to provide 66.81% protection against rice blast under potted conditions. Whole-genome sequencing revealed that the genome size of isolate G5 was 4,065,878 bp, including 4,182 coding genes. Using the anti-SMASH software, 14 secondary metabolite synthesis gene clusters were predicted to encode antifungal substances, such as fengycin, surfactin, and bacilysin. The G5 isolate also contained genes related to plant growth promotion. These findings provide a theoretical basis for expounding the biocontrol mechanisms of this strain and suggest further development of biogenic agents that could effectively inhibit rice blast pathogen growth and reduce crop damage, while being environmentally friendly, conducive to ecological development, and a sustainable alternative to chemical pesticides. This study also enriches the relevant research on endophytes of wild rice, which proves that wild rice is a valuable microbial resource bank.

10.
IEEE Trans Image Process ; 30: 6815-6828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310305

RESUMO

Owing to the limits of incident energy and hardware system, hyperspectral (HS) images always suffer from low spatial resolution, compared with multispectral (MS) or panchromatic (PAN) images. Therefore, image fusion has emerged as a useful technology that is able to combine the characteristics of high spectral and spatial resolutions of HS and PAN/MS images. In this paper, a novel HS and PAN image fusion method based on convolutional neural network (CNN) is proposed. The proposed method incorporates the ideas of both hyper-sharpening and MS pan-sharpening techniques, thereby employing a two-stage cascaded CNN to reconstruct the anticipated high-resolution HS image. Technically, the proposed CNN architecture consists of two sub-networks, the detail injection sub-network and unmixing sub-network. The former aims at producing a latent high-resolution MS image, whereas the latter estimates the desired high-resolution abundance maps by exploring the spatial and spectral information of both HS and MS images. Moreover, two model-training fashions are presented in this paper for the sake of effectively training our network. Experiments on simulated and real remote sensing data demonstrate that the proposed method can improve the spatial resolution and spectral fidelity of HS image, and achieve better performance than some state-of-the-art HS pan-sharpening algorithms.

11.
J Hazard Mater ; 403: 123626, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795816

RESUMO

Humic acid (HA) removal research focuses on the global water treatment industry. In this work, efficient HA degradation with an ultra-high synergetic intensity is achieved by combined bubble discharge with activated carbon (AC). Adding AC to the discharge greatly improves HA removal efficiency and degradation speed; the synergetic intensity reaches 651.52% in the combined system, and the adsorption residual on AC is 4.52%. After 90 min of treatment, the HA removal efficiency reaches 98.90%, 31.29%, and 7.61% in the plasma-AC combined, solo bubble discharge, and solo AC adsorption systems, respectively. During the plasma process, the number of pore structures and active sites and the amount of oxygen-containing functional groups on the AC surface increase, resulting in a higher adsorption capacity to reactive species (H2O2 and O3) and HA and promoting interactions on the AC surface. For HA mineralization, the presence of AC greatly promotes the destruction of aromatic structures and chromophoric HA functional groups.

12.
Anal Methods ; 12(48): 5747-5766, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33231592

RESUMO

Heavy metals can be enriched in living organisms and seriously endanger human health and the ecological environment, which has evolved into a significant global environmental problem. Based on summarizing the spatial distribution of heavy metals in the environment, this review introduces heavy metal detection technologies such as inductively coupled plasma mass spectrometry/atomic emission spectrometry, atomic absorption spectrometry, atomic fluorescence spectrometry, and laser-induced breakdown spectrometry. It summarizes their respective advantages, characteristics, and applicability. Besides, atmospheric pressure discharge plasma as a potential heavy metal detection technology is also introduced and discussed in this review. The current research mainly focuses on improving the analytical performance and optimizing the practical application. Furthermore, this review not only summarizes the advantages of atmospheric pressure discharge plasma in the field of element analysis but also summarizes the principal scientific and technical problems to be solved urgently.

13.
Nanoscale ; 12(18): 10035-10043, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32319506

RESUMO

The development of low-cost and highly efficient materials for the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is an attractive and challenging topic in chemistry. In this study, the electrocatalytic performance of a series of transition metal (TM) atoms supported on MoS2 nanosheets (TM@MoS2) was systematically investigated using density functional theory (DFT) calculations. It was found that Re supported on MoS2 (Re@MoS2) has the best NRR catalytic activity with a limiting potential of -0.43 V, along with high selectivity over the competing hydrogen evolution reaction (HER). Moreover, the ab initio molecular dynamics (AIMD) simulations at 500 K and density of states (DOS) calculations indicated the high thermodynamic stability and excellent electrical conductivity of Re@MoS2. A linear trend between several parameters of single atom catalysts (SACs) and the adsorption Gibbs free energy change of the NH species (ΔG*NH) was observed, indicating the later as a simple descriptor for the facilitated screening of novel SACs. These results pave the way for exploring novel, highly efficient electrocatalysts for the electrochemical NRR under ambient conditions.

14.
Nanomaterials (Basel) ; 9(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600913

RESUMO

Dielectric barrier discharge plasma is one of the most popular methods to generate nanthermal plasma, which is made up of a host of high-energy electrons, free radicals, chemically active ions and excited species, so it has the property of being prone to chemical reactions. Due to these unique advantages, the plasma technology has been widely used in the catalytic fields. Compared with the conventional method, the heterogeneous catalyst prepared by plasma technology has good dispersion and smaller particle size, and its catalytic activity, selectivity and stability are significantly improved. In addition, the interaction between plasma and catalyst can achieve synergistic effects, so the catalytic effect is further improved. The review mainly introduces the characteristics of dielectric barrier discharge plasma, development trend and its recent advances in catalysis; then, we sum up the advantages of using plasma technology to prepare catalysts. At the same time, the synergistic effect of plasma technology combined with catalyst on methanation, CH4 reforming, NOx decomposition, H2O2 synthesis, Fischer-Tropsch synthesis, volatile organic compounds removal, catalytic sterilization, wastewater treatment and degradation of pesticide residues are discussed. Finally, the properties of plasma in catalytic reaction are summarized, and the application prospect of plasma in the future catalytic field is prospected.

15.
Nanomaterials (Basel) ; 9(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561618

RESUMO

Discharge regime transition in a single pulse can present the breakdown mechanism of nanosecond pulsed dielectric barrier discharge. In this paper, regime transitions between streamer, diffuse, and surface discharges in nanosecond pulsed dielectric barrier discharge are studied experimentally using high resolution temporal-spatial spectra and instantaneous exposure images. After the triggering time of 2-10 ns, discharge was initiated with a stable initial streamer channel propagation. Then, transition of streamer-diffuse modes could be presented at the time of 10-34 ns, and a surface discharge can be formed sequentially on the dielectric plate. In order to analyze the possible reason for the varying discharge regimes in a single discharge pulse, the temporal-spatial distribution of vibrational population of molecular nitrogen N2 (C3Πu, v = 0,1,2) and reduced electric field were calculated by the temporal-spatial emission spectra. It is found that at the initial time, a distorted high reduced electric field was formed near the needle electrode, which excited the initial streamer. With the initial streamer propagating to the dielectric plate, the electric field was rebuilt, which drives the transition from streamer to diffuse, and also the propagation of surface discharge.

16.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717939

RESUMO

In the last few years, due to the large amount of greenhouse gas emissions causing environmental issue like global warming, methods for the full consumption and utilization of greenhouse gases such as carbon dioxide (CO2) have attracted great attention. In this study, a packed-bed dielectric barrier discharge (DBD) coaxial reactor has been developed and applied to split CO2 into industrial fuel carbon monoxide (CO). Different packing materials (foam Fe, Al, and Ti) were placed into the discharge gap of the DBD reactor, and then CO2 conversion was investigated. The effects of power, flow velocity, and other discharge characteristics of CO2 conversion were studied to understand the influence of the filling catalysts on CO2 splitting. Experimental results showed that the filling of foam metals in the reactor caused changes in discharge characteristics and discharge patterns, from the original filamentary discharge to the current filamentary discharge as well as surface discharge. Compared with the maximum CO2 conversion of 21.15% and energy efficiency of 3.92% in the reaction tube without the foam metal materials, a maximum CO2 decomposition rate of 44.84%, 44.02%, and 46.61% and energy efficiency of 6.86%, 6.19%, and 8.85% were obtained in the reaction tubes packed with foam Fe, Al, and Ti, respectively. The CO2 conversion rate for reaction tubes filled with the foam metal materials was clearly enhanced compared to the non-packed tubes. It could be seen that the foam Ti had the best CO2 decomposition rate among the three foam metals. Furthermore, we used density functional theory to further verify the experimental results. The results indicated that CO2 adsorption had a lower activation energy barrier on the foam Ti surface. The theoretical calculation was consistent with the experimental results, which better explain the mechanism of CO2 decomposition.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 207: 294-300, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30265944

RESUMO

The paper proposes a simple and convenient approach to represent the discharge uniformity of nanosecond-pulse dielectric barrier discharge (DBD) in air by observation of the ratio of N2+ (B3Σu+ → X3Σg+, 0-0, 391.4 nm) to N2 (C3Πu → B3Πg, 2-5, 394.3 nm) intensities. The DBDs at different pulse peak voltages, discharge gap distances, dielectric materials and thicknesses were investigated by recording their single-pulse-shot discharge images and N2+/N2 ratios to verify the feasibility of the above innovative approach. The results show that the ratios of N2+/N2 are in the range of 0.18-0.6within our experimental parameters, which is respect to the reduced electric field (E/N, where E is the field strength and N is gas number density) strength of 260-440 Td (1 Td = 10-17 V·cm2). And it is indicated that a lower N2+/N2 ratio would be found in a higher pulse peak voltage or/and a lower discharge gap distance, which benefits for improving the discharge uniformity of nanosecond-pulse DBD. The thickness and permittivity of dielectric material also affect the E/N strength and discharge uniformity to a certain extent, but the effects are ambiguous due to additional factors of dielectric materials. In addition, the theoretical basis and application scope of this approach were also discussed.

18.
Sci Rep ; 8(1): 12959, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154491

RESUMO

Current-induced magnetization reversal via spin-orbit torques (SOTs) has been intensively studied in heavy-metal/ferromagnetic-metal/oxide heterostructures due to its promising application in low-energy consumption logic and memory devices. Here, we systematically study the function of Joule heating and SOTs in the current-induced magnetization reversal using Pt/Co/SmOx and Pt/Co/AlOx structures with different perpendicular magnetic anisotropies (PMAs). The SOT-induced effective fields, anisotropy field, switching field and switching current density (Jc) are characterized using electric transport measurements based on the anomalous Hall effect and polar magneto-optical Kerr effect (MOKE). The results show that the current-generated Joule heating plays an assisted role in the reversal process by reducing switching field and enhancing SOT efficiency. The out-of-plane component of the damping-like-SOT effective field is responsible for the magnetization reversal. The obtained Jc for Pt/Co/SmOx and Pt/Co/AlOx structures with similar spin Hall angles and different PMAs remains roughly constant, revealing that the coherent switching model cannot fully explain the current-induced magnetization reversal. In contrast, by observing the domain wall nucleation and expansion using MOKE and comparing the damping-like-SOT effective field and switching field, we conclude that the current-induced magnetization reversal is dominated by the depinning model and Jc also immensely relies on the depinning field.

19.
Sci Rep ; 6: 25242, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125663

RESUMO

In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 161: 186-94, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26924210

RESUMO

In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B(3)Πg→A(3)Σu(+)) and O (3p(5)P→3s(5)S2(o)) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A(2)Σ(+)→X(2)Пi), N2(+) (B(2)Σu(+)→X(2)Σg(+)), N2 (C(3)Πu→B(3)Πg), N2 (B(3)Πg→A(3)Σu(+)), and O (3p(5)P→3s(5)S2(o)) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2(+) (B(2)Σu(+)) than that of N2 (C(3)Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2(+) (B(2)Σu(+)→X(2)Σg(+)), and the results show that the vibrational and rotational temperatures are 3250±20K and 350±5K under the pulse peak voltage of 28kV, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA