Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Med Chem Lett ; 33: 127740, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316412

RESUMO

Cancer is a major cause of death worldwide. Small molecule inhibitors have become a major therapeutic treatment for cancer. In this study, a series of novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide derivatives were designed, synthesized and evaluated for their antitumor activity against the A549, Hela and MCF-7 cell lines. Among them, the optimal compound 35 was found to possess excellent inhibitory activity against the A549, Hela and MCF-7 cell lines with IC50 values of 5.29 ± 0.58, 3.72 ± 0.91, and 9.23 ± 0.56 µM, which were superior to Golvatinib. The structure-activity relationship showed that the introduction of 7H-pyrrolo[2,3-d]pyrimidine along with the F atom of the central and terminal benzene was beneficial to the improvement of inhibitory activity of the target compounds. Besides, we took further study on the combined mode between compound 35 and c-Met kinase through molecular docking.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Desenho de Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
2.
Bioorg Chem ; 112: 104848, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819737

RESUMO

A class of 2-aryl-4-aminoquinazoline derivatives (7a-7j, 8a-8h, 9a-9h and 10a-10k) were designed, synthesized and evaluated as EGFR inhibitors. The anti-proliferative activity of compounds in vitro showed that compound 9e was considered to be a promising derivative. Compared with the lead compound Angew2017-7634-1, 9e exhibited excellent inhibitory activity against A549, NCI-H460 and H1975 cell lines, with IC50 values of 14.33 ± 1.16 µM, 17.81 ± 1.25 µM and 13.41 ± 1.14 µM, respectively. Moreover, 9e could effectively inhibit against Ba/F3-EGFRDel19/T790M/C797S cell lines. In the kinase experiment, the most promising compound 9e exhibited excellent enzymatic inhibitory activity and selectivity for EGFRL858R/T790M, with an IC50 value of 0.74 µM. Further activity studies showed that 9e could not only induce remarkable cell-apoptosis of A549, but also block A549 cell lines in S-phase in a concentration-dependent manner. Furthermore, molecular docking study revealed the binding mode of 9e. All in all, we analyzed the structure-activity relationship of the target compounds, and explored their mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
3.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065165

RESUMO

Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure-activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.


Assuntos
Acrilamida/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Piperazinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 28(19): 115669, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912435

RESUMO

A series of novel thiapyran-pyrimidine derivatives (10a-10h, 11a-11g, 12a-12f, 13a-13f, 14a-14f) were synthesized and their antiproliferative activities were tested. Most of the target compounds showed good activity on one or more cancer cell lines but low activity on human normal cell LO2. The most promising compound 13a exhibited the similar IC50 values on A549 and H1975 cell lines to the lead drug Olmutinib, and exhibited excellent activity and selectivity on EGFRT790M/L858R in the kinase experiment. AO and Hoechst33258 staining indicated that 13a could effectively induce H1975 cells apoptosis. Cell cycle and apoptosis analysis suggested that 13a could block cancer cells in G2/M phase and induce into late apoptosis in a manner of concentration-dependent. The structure-activity relationship of 13a was analyzed to explore its mechanism. All the results showed that 13a was a promising EGFR inhibitor.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Piranos/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piranos/química , Pirimidinas/química , Relação Estrutura-Atividade
5.
Chem Biol Drug Des ; 101(1): 195-217, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394145

RESUMO

The treatment of advanced non-small cell lung cancer (NSCLC) has made substantial progress due to the rapid development of small molecule targeted therapy, with dramatically prolonged survival. As an effective drug for the treatment of NSCLC, epidermal growth factor receptor (EGFR) inhibitors are currently experiencing issues like severe adverse events and drug resistance. It is urgent to develop novel types of EGFR inhibitors to overcome the abovementioned limitations. Pyrrole always works well as a probe for the creation of novel medication candidates for hard-to-treat conditions like lung cancer. Although the design, synthesis, and biological assays of pyrrole derivatives have been reported, their inhibitory actions against the receptor tyrosine kinase (RTK) EGFR have not been in-depthly studied. This review highlights the small molecule EGFR inhibitors containing pyrrole heterocyclic pharmacophores in recent years, and the research on their mechanism, biological activity, and structure-activity relationship (SAR).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Eur J Med Chem ; 233: 114215, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227978

RESUMO

A total of 27 novel pyrrolo-pyridine benzamide derivatives were designed, synthesized and biologically evaluated. 14 of these derivatives were superior to Cabozantinib in cytotoxic assay, and compound 21 exhibited the best antitumor effect in vitro and vivo. Apoptosis activity was implemented by compound 21 on A549 cells, especially for the greatly enhanced late apoptosis compared with the control group (8.13% vs 4.49%), which was superior to that of Cabozantinib (6.89%). Similarly, 21 stagnated the A549 cells arrest in the two cell distribution phases (G0/G1 and G2/M) in dose-dependence manner. In addition, compound 21 could inhibit c-Met expression compared with Cabozantinib at the same concentration (10 µM). The results of molecular docking and dynamics study demonstrated that compound 21 formed four key hydrogen bonds with c-Met kinase. And key amino acids Met1160, Phe1134 and Phe1223 played a key functional role in the binding free energy. Furthermore, 21 exhibited high antitumor efficacy in tumor growth inhibition rate, which was superior to Cabozantinib (64.5% vs 47.9%). Overall, compound 21 could be considered as a promising antitumor agent.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Antineoplásicos/química , Benzamidas/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Piridinas/química , Pirróis/química , Relação Estrutura-Atividade , Sulfonamidas , Tiofenos
7.
Biomed Pharmacother ; 155: 113537, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113258

RESUMO

Breast cancer has become the most commonly diagnosed cancer, surpassing lung cancer, with 2.26 million new breast cancers worldwide in 2020. Hence, there is an urgent need to develop effective molecularly targeted therapeutic drugs to treat breast cancer. In this paper, we designed, synthesized and screened a novel thiophene-triazine derivative, XS-2, as a potent dual PI3K/mTOR inhibitor for the treatment of breast cancer. Also, XS-2 was found to be potentially effective against triple-negative breast cancer (TNBC) in vitro during the investigation. We evaluated the in vitro inhibitory effect of XS-2 on 10 cancer cell lines by MTT and 6 kinases to investigated its in vivo antitumor activity in MCF-7 xenograft tumor-bearing BALB/c nude mice. In addition, the in vitro/in vivo toxicity to mice was also assessed by hemolytic toxicity, H&E staining and blood biochemical analysis. In order to investigate the antitumor mechanism of XS-2, a series of experiments were carried out in vitro/in vivo animal model and molecular biological levels such as the cell cycle and the apoptosis assay, real-time PCR, western blot, docking and molecular simulations analysis, etc. What's more, wound healing assay, Transwell and Western Blot were applied to explore the ability of XS-2 to inhibit the cell invasion and migration. The results showed that XS-2 exhibited strong antitumor activity both in vitro and in vivo. The inhibitory activities of XS-2 on ten cancer cell lines were ranging from 1.07 ± 0.11 to 0.002 ± 0.001 µM, which were 1565 times better than that of the lead compound GDC-0941, inhibitory activities against PI3Kα and mTOR kinases were 291.0 and 60.8 nM, respectively. Notably, XS-2 not only showed significant in vivo antitumor activity and low toxicity, with the tumor inhibition rate of 57.0 %, but also exhibited strong inhibitory in the expression of related proteins of PI3K pathway in tumor tissues. In addition, XS-2 significantly inhibited breast cancer MCF-7 and MDA-MB-231 cells in a concentration- and time-dependent manner, and inhibited the migration and invasion ability of MDA-MB-231 and MCF-7 cells. More than that, XS-2 could inhibit the increase of the expression levels of N-cadherin and vimentin upregulated by EGF and reversed the E-cadherin expression down regulated by EGF, resulting in inhibiting EMT in MCF-7 and MDA-MB-231 cells. The results showed that XS-2 was expected to be successfully developed as a high-efficiency and low-toxicity breast cancer therapeutic drug with the potential to inhibit the invasion and migration of TNBC. This provides a new research idea for the treatment of TNBC, which is of great significance.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Vimentina , Camundongos Nus , Fator de Crescimento Epidérmico/farmacologia , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Caderinas , Tiofenos/farmacologia , Triazinas/farmacologia , Triazinas/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Ensaios Antitumorais Modelo de Xenoenxerto
8.
World J Gastroenterol ; 9(1): 169-73, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12508376

RESUMO

AIM: To investigate experimentally the effects of methionine enkephalin on signal transduction of mouse myeloma NS-1 cells. METHODS: The antigen determinate of delta opioid receptor was designed in this lab and the polypeptide fragment of antigen determinate with 12 amino acids residues was synthesized. Monoclonal antibody against this peptide fragment was prepared. Proliferation of Mouse NS-1 cells treated with methionine enkephalin of 1 x 10(-6) mol x L(-1) was observed. The activities of protein kinase A (PKA) and protein kinase C (PKC) were measured and thereby the mechanism of effect of methionine enkephalin was postulated. RESULTS: The results demonstrated that methionine enkephalin could enhance the proliferation of NS-1 cells and the effect of methionine enkephalin could be particularly blocked by monoclonal antibody. The activity of PKA was increased in both cytosol and cell membrane. With reference to PKC, the intracellular activity of PKC in NS-1 cells was elevated at 1 x 10(-7) mol x L(-1) and then declined gradually as the concentration of methionine enkephalin was raised. The effects of methionine enkephalin might be reversed by both naloxone and monoclonal antibody. CONCLUSION: Coupled with the findings, it indicates that the signal transduction systems via PKA and PKC are involved in the effects of methionine enkephalin by binding with the traditional opioid receptors,and therefore resulting in different biological effects.


Assuntos
Citocinas , Encefalina Metionina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Encefalina Metionina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteína Quinase C/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/imunologia , Receptores Opioides delta/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA