Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 83(1): 114-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33743015

RESUMO

Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity, and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF], and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass, and enzyme activities were strongly affected by vegetation restoration, and soil bacterial and fungal communities were significantly different from each other at the sites. Correlation analysis showed that LB and FRB were significantly positively correlated with the Chao index of soil bacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota, and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH, and nutrients have important effects on the bacterial and fungal diversities, as well as Acidobacteria, Proteobacteria, Actinobacteria, Nitrospirae, Zygomycota, and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities, and the composition and diversity of soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.


Assuntos
Microbiota , Solo , Biomassa , China , Nutrientes , Solo/química , Microbiologia do Solo
2.
Chemistry ; 26(39): 8579-8587, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32567104

RESUMO

Carbon-layer-coated porous Ni-doped CoSe2 (Ni-CoSe2 /C) nanospheres have been fabricated by a facile hydrothermal method followed by a new selenization strategy. The porous structure of Ni-CoSe2 /C is formed by the aggregation of many small particles (20-40 nm), which are not tightly packed together, but are interspersed with gaps. Moreover, the surfaces of these small particles are covered with a thin carbon layer. Ni-CoSe2 /C delivers superior rate performance (314.0 mA h g-1 at 20 A g-1 ), ultra-long cycle life (316.1 mA h g-1 at 10 A g-1 after 8000 cycles), and excellent full-cell performance (208.3 mA h g-1 at 0.5 A g-1 after 70 cycles) when used as an anode material for half/full sodium-ion batteries. The Na storage mechanism and kinetics have been confirmed by ex situ X-ray diffraction analysis, assessment of capacitance performance, and a galvanostatic intermittent titration technique (GITT). GITT shows that Na+ diffusion in the electrode material is a dynamic change process, which is associated with a phase transition during charge and discharge. The excellent electrochemical performance suggests that the porous Ni-CoSe2 /C nanospheres have great potential to serve as an electrode material for sodium-ion batteries.

3.
Res Sports Med ; 26(2): 158-167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29382229

RESUMO

The aim of this study was to identify the key physical and technical performance variables related to team quality in the Chinese Super League (CSL). Teams' performance variables were collected from 240 matches and analysed via analysis of variance between end-of-season-ranked groups and multinomial logistic regression. Significant physical performance differences between groups were identified for sprinting (top-ranked group vs. upper-middle-ranked group) and total distance covered without possession (upper and upper-middle-ranked groups and lower-ranked group). For technical performance, teams in the top-ranked group exhibited a significantly greater amount of possession in opponent's half, number of entry passes in the final 1/3 of the field and the Penalty Area, and 50-50 challenges than lower-ranked teams. Finally, time of possession increased the probability of a win compared with a draw. The current study identified key performance indicators that differentiated end-season team quality within the CSL.


Assuntos
Desempenho Atlético , Comportamento Competitivo , Futebol , China , Humanos
4.
Biol Pharm Bull ; 37(3): 387-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24369268

RESUMO

Aristolochiae Fructus (AF) and honey-fried Aristolochiae Fructus (HAF) have been used in China for thousands of years as an anti-tussive and expectorant drug. Few clinical cases were reported associated with the toxicity of AF and HAF, although relatively high contents of aristolochic acids (AAs) were found in them. This work was designed to compare the acute and subacute toxicity of AF and HAF in order to provide references for safe clinical use and to evaluate the possibility of reducing toxicity of AF by honey-processing. The extracts of the herb were fed to mice or rats via gastric tube. Various toxic signs and symptoms, body weights, serum biochemical assay, organ weights and histopathology were used to evaluate the toxic effects. The median lethal dose (LD50) of AF and HAF are 34.1±7.2 g/kg/d and 62.6±8.0 g/kg/d with a 95% average trustable probability (p=0.95), respectively. The subacute results showed a dose-dependant relationship of the toxicity of AF and HAF. Even in the high dose groups, only moderate toxicity was observed. Honey-frying and decoction with water can decrease the contents of AAs, and attenuate the toxic effects of AF. But sufficient attention should be still paid to the safety of AF and HAF due to the existence of AAs.


Assuntos
Aristolochia/efeitos adversos , Ácidos Aristolóquicos/efeitos adversos , Medicamentos de Ervas Chinesas/efeitos adversos , Mel , Animais , Aristolochia/química , Frutas/química , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos
5.
Huan Jing Ke Xue ; 45(8): 4696-4708, 2024 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-39168688

RESUMO

Accurately assessing the changes in soil organic carbon storage (SOCS) before and after the Grain for Green Project (GFG) in the Loess Plateau (LP) and exploring the relationship between its spatial and temporal distribution and the influencing factors were important references for the development of regional recycling as well as the formulation of ecological protection policies. Based on the data of climate, human activities, and SOCD in the surface (0-20 cm) and deep (0-100 cm) soil before and after GFG in the LP from 2001 to 2020, we investigated the changes in SOCD at different spatial and temporal scales by using the methods of trend analysis, the kriging method, and variance partitioning analysis. The results showed that: ① Before and after the GFG, the surface SOCS of the whole region increased by 8 338.7×104 t; the deep SOCS increased by 1 160.02×104 t. ② In each bioclimatic subregion, the whole-region average SOCD of Ⅰ (Semi-Humid Forest Region), Ⅱ (Semi-Humid Semi-Arid Forest and Grassland Region), and Ⅲ (Semi-Arid Typical Grassland Region) showed a significant increasing trend, with a decreasing trend in Ⅳ (arid semi-arid desert grassland area) and Ⅴ (arid desert area). ③ The average surface SOCS increase in different ecosystems was ranked as follows: cropland > grassland > woodland > shrubs > bare land and sparse vegetation. The deep soil increase was ranked as follows: grassland > cropland > woodland > shrubs > bare land and sparse vegetation. ④ Climate factors were the most important driving factors for changes in SOCD; the annual average temperature and precipitation were significantly positively correlated with changes in SOCD. The results of the study could provide data support for regional ecological management and land use policy formulation to promote high quality development of the ecological environment in the LP.


Assuntos
Carbono , Mudança Climática , Solo , Solo/química , China , Carbono/análise , Compostos Orgânicos/análise , Conservação dos Recursos Naturais , Atividades Humanas , Florestas , Ecossistema , Monitoramento Ambiental/métodos , Altitude , Pradaria , Sequestro de Carbono , Humanos , Produtos Agrícolas/crescimento & desenvolvimento
6.
Behav Brain Res ; 466: 114974, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554850

RESUMO

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Assuntos
Região CA1 Hipocampal , Dendritos , Diterpenos do Tipo Caurano , Potenciação de Longa Duração , Animais , Feminino , Masculino , Região CA1 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos , Dendritos/efeitos dos fármacos , Memória/efeitos dos fármacos , Fatores Sexuais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
7.
Water Sci Technol ; 68(9): 1914-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225089

RESUMO

Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.


Assuntos
Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio/métodos , Técnicas Biossensoriais/métodos , Esgotos/química , Águas Residuárias/química , Fontes de Energia Bioelétrica/economia , Fontes de Energia Bioelétrica/microbiologia , Análise da Demanda Biológica de Oxigênio/economia , Análise da Demanda Biológica de Oxigênio/instrumentação , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/instrumentação , Eletricidade , Eletrodos , Concentração de Íons de Hidrogênio
8.
Huan Jing Ke Xue ; 44(8): 4689-4697, 2023 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-37694661

RESUMO

As a key factor of global climate change, precipitation can affect soil respiration. Microorganisms are the key drivers of soil respiration, but the relationship between microbial stoichiometry and respiration in vulnerable habitat areas under different precipitation gradients is unclear. In this study, five precipitation gradients were simulated on a typical abandoned grassland in the loess hilly region. Soil respiration, nutrients, microbial biomass, and extracellular enzymes were measured, and the microbial measurement characteristics were calculated. The results showed that:①soil respiration (SR) increased significantly under rainfed treatment but decreased significantly under D50 treatment. ②Precipitation changes affected the stoichiometric imbalance, and the N:P imbalance of the active resource pool presented a u-shaped trend, whereas the C:P imbalance changed significantly only in 2019, with a trend of P50>P25>CK>D25>D50. Additionally, the stoichiometric imbalance was caused by the soil stoichiometry. In 2019, the C:P imbalance of the active resource pool showed a trend of P50>P25>CK>D25>D50, whereas the N:P imbalance of the active resource pool showed a u-shaped trend, and the stoichiometric imbalance was caused by soil stoichiometry changes. ③Soil ß-1,4-glucosidase (BG) enzyme decreased with increasing precipitation, and the sum activities of ß-1,4-N-acetylglucosaminidase (NAG) and leucine aminopeptidase (LAP) significantly decreased during two years of rainfall reduction treatment. The activity of alkaline phosphatase (ALP) significantly increased under increasing rainfall but significantly decreased under decreasing rainfall. BG:(NAG+LAP) and BG:ALP were significantly decreased under increasing precipitation conditions but significantly increased under decreasing precipitation conditions. ④The partial least squares path model (PLS-PM) showed that precipitation had an impact on soil respiration through influencing C:P stoichiometric imbalance and soil enzyme stoichiometric ratio. These results highlight the importance of stoichiometric imbalances in regulating soil respiration and may help predict how they are caused by precipitation change control carbon cycling and nutrient flow in terrestrial ecosystems.


Assuntos
Ecossistema , Pradaria , Biomassa , Corantes , Respiração , Solo
9.
Huan Jing Ke Xue ; 44(1): 444-451, 2023 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-36635832

RESUMO

In order to explore the characteristics of organic carbon mineralization and the variation law of organic carbon components of an artificial forest in a loess hilly area, an artificial Robinia pseudoacacia forest restored for 13 years and the adjacent slope farmland were selected as the research objects, and indoor culture experiments under three different temperature treatments (15, 25, and 35℃) were carried out. The results indicated that the mineralization rate of soil organic carbon decreased sharply at first and then stabilized. The cumulative release of organic carbon increased rapidly in the initial stage of culture and gradually slowed in the later stage. Soil organic carbon mineralization in sloping farmland was more sensitive to temperature change, and its temperature sensitivity coefficient Q10 was 1.52, whereas that in R. pseudoacacia forest land was only 1.38. According to the fitting of the single reservoir first-order dynamic equation, the soil mineralization potential Cp of R. pseudoacacia forest land and slope farmland was between 2.02-4.32 g·kg-1 and 1.25-3.17 g·kg-1, respectively, that is, the mineralization potential of the R. pseudoacacia forest was higher. During the cultivation period, the content of various active organic carbon components decreased with time, and that in the R. pseudoacacia forest land was greater than that in the slope land. The cumulative carbon release of soil was significantly positively correlated with the contents of MBC and DOC (P<0.05), and Q10 (15-25℃) was negatively correlated with the contents of SOC, EOC, and SWC (P<0.05). These results could provide some reference for the study of soil carbon sequestration in loess hilly regions under climate change.


Assuntos
Robinia , Solo , Carbono/análise , Nitrogênio/análise , Florestas , Carvão Vegetal , China
10.
Huan Jing Ke Xue ; 43(3): 1657-1667, 2022 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-35258230

RESUMO

Clarifying the changing trends and driving factors of soil respiration in fragile habitats under the background of climate change is of great significance for understanding the regional carbon cycle and the conversion of ecosystem carbon source and sink functions. This research focused on grasslands that had been naturally abandoned and restored for 12 years in the loess hilly region of northern Shaanxi, using an open top chamber (OTC) and artificially increased natural rainfall to simulate climate warming and precipitation increase and their interaction. Furthermore, we used a combination of field monitoring and indoor analysis to explore soil water content, temperature, and nutrient characteristics and the response characteristics of soil respiration rate to warming and increased precipitation and further analyzed the key factors driving changes in soil respiration. The results showed that:① warming (W) significantly increased the 5 cm soil temperature, with an average increase of 1.34℃ throughout the sampling year, whereas the increased precipitation (P50%) treatment significantly reduced the 5 cm soil temperature, reducing the average 5 cm soil temperature during the entire sampling year by 0.88℃ and increasing the soil water content (SWC) at the same time. The SWC was 13.12% and 16.45% higher than that in the control (CK), respectively. In addition, compared with that in the CK, the treatment of warming and increased precipitation (WP50%) not only increased soil temperature but also increased SWC; in general, the increase in temperature and precipitation played an antagonistic effect on the influence of soil temperature and humidity. ② P50% significantly increased the content of soil organic carbon, dissolved organic carbon, and labile organic carbon, causing changes in the soil stoichiometric ratio and the distribution characteristics of labile-recalcitrant carbon components, whereas W did not have a significant impact on organic carbon. In addition, soil total nitrogen and phosphorus and available nitrogen and phosphorus nutrients were not significantly different between treatments. ③ P50% significantly increased the Rs rate, and the effect of W on the soil respiration rate mainly depended on the seasonal precipitation and temperature. It was demonstrated that warming in winter and seasons with abundant rainfall had a significant promotion effect on the soil respiration rate. The exponential fitting of soil respiration rate and 5 cm soil temperature found that the soil respiration temperature sensitivity (Q10) was the highest under the precipitation treatment, reaching 1.68, whereas the Q10 was the lowest under the warming treatment (1.50). ④ Linear regression analysis showed that soil organic carbon, dissolved organic carbon, and labile organic carbon were all significantly positively correlated with soil respiration rate. Variation partitioning analysis showed that soil temperature, SWC, and nutrient characteristics explained 64.43% of the variation in soil respiration rate. The soil temperature and SWC were the main controlling factors of the change in soil respiration rate, with an explanation degree of 31.16%. Correlation analysis also showed that there was a significant correlation between SWC, soil temperature and respiration rate, soil organic carbon, dissolved organic carbon, labile organic carbon, C:N, and C:P. In summary, the climate prediction of abandoned grassland tending toward warm temperatures and high humidity in the loess hilly region will significantly affect the regional hydrothermal environment and nutrient characteristics, change the distribution ratio of soil labile and recalcitrant carbon, and promote regional soil carbon emissions. The analysis results showed that the key factor driving the change in soil respiration rate of abandoned grassland in the loess hilly region was soil temperature and SWC characteristics.


Assuntos
Pradaria , Solo , Carbono , Ecossistema , Respiração , Temperatura
11.
Huan Jing Ke Xue ; 43(2): 1050-1058, 2022 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-35075879

RESUMO

To reveal the change in the characteristics of soil microbial C-degrading enzyme activities and the response to the components of C during the restoration process of Robinia pseudoacacia forests in the Loess Plateau, the components of the soil C pool, C-degrading enzyme activities, and microbial metabolic entropy of R. pseudoacacia in different restoration stages were studied, and the response relationship between C-degrading enzymes and soil C components was explored. The results showed that the microbial respiration (MR) first increased and then decreased with the restored years. We found that the microbial metabolic entropy (qCO2) decreased significantly with the restored years, but the microbial entropy (qMB) increased. Soil C-degrading enzymes increased significantly in the early-stage restoration of R. pseudoacacia; however, oxidizing enzymes (PO and PER) and cellobiohydrolase (CBH) decreased in the late stage of restoration. The soil organic C and recalcitrant organic C increased significantly with the restored years; however, there was no significant difference for the labile organic C. Correlation analysis and the partial least squares-path model (PLS-PM) showed that soil C-degrading enzymes and C components were significantly correlated with microbial respiration and entropy (qCO2 and qMB), respectively. The hydrolytic enzyme (BG+CBH) was significantly positively correlated with SOC, microbial biomass C, qMB, and recalcitrant and labile organic C. The oxidizing enzyme (PO+PER) was significantly positively correlated with the soil clay and qCO2. In addition, the recalcitrant organic C was the key driver of soil microbial metabolism affected by vegetation restoration. Overall, the ecosystem of R. pseudoacacia plantations would gradually stabilize with the increase in restored years and significantly increase the sequestration effect of soil C. These results will be helpful to understand the transformation rule and regulation mechanism of the soil C pool in vulnerable habitats and provide scientific basis for the restoration and management of vegetation in the Loess Plateau.


Assuntos
Robinia , Carbono/análise , China , Ecossistema , Solo , Microbiologia do Solo
12.
Huan Jing Ke Xue ; 42(1): 411-421, 2021 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-33372494

RESUMO

Clarifying the characteristic of soil enzymatic activity and stoichiometry variations as well as their influencing factors following farmland abandonment have important implications for understanding soil nutrient availability after revegetation and for illuminating the underlying mechanisms of soil nutrient cycling in ecosystems. To determine microbial nutrient limitations after farmland abandonment and to explore the driving factors of the variations in soil enzymatic activity and stoichiometry along a chronosequence of abandoned farmlands (0-, 10-, 20-, and 30-year-old) in the Loess Hilly Region, China, the potential activities of carbon (C)-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes, soil physicochemical properties, and plant diversity and family composition were measured. The results showed that the activities of ß-1,4-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and alkaline phosphatase (ALP) increased significantly with the increasing years of land abandonment, whereas the activity of ß-1,4-glucosidase (BG) showed the opposite change trend. Additionally, the ratios of BG:(NAG+LAP) and BG:ALP had the same variation trend with BG activity, which decreased significantly with increasing time, but the ratio of (NAG+LAP):ALP showed an increasing trend and then decreased, with the highest values observed in the 20-year sites. Moreover, the vector length of soil enzymatic stoichiometry decreased significantly as the years of land abandonment inceased, suggesting a reduced microbial C limitation after farmland abandonment. The vector angles <45°were observed at farmlands (0-year sites) and 10-year sites, whereas angles >45°were detected at 20-and 30-year sites, indicating that soil microbial communities were N-limited in the first 10 years of land abandonment and thereafter were P-limited. The redundancy analysis (RDA) reveled that soil organic C content, total N content, the C:N and C:P ratios, soil pH values, and plant diversity had significant effects on soil enzymatic activity and stoichiometry. A variation partitioning analysis (VPA) further demonstrated that edaphic and vegetation factors explained 62.0% of the total variance of soil enzymatic activity and stoichiometry. It should be noted that the interaction between vegetation characteristics and soil physicochemical properties was the major factor affecting soil enzymatic activity and stoichiometry, which explained 37.1% of the variance of the soil enzyme characteristics. Collectively, the application of P fertilizer should be considered to mitigate the deficiency of available P in the ecosystem during farmland abandonment, and these findings may provide a theoretical basis for understanding the mechanisms underlying microbe-mediated biogeochemical cycles as well as guiding soil nutrient management and the sustainable development of the ecological environment.


Assuntos
Ecossistema , Solo , Carbono/análise , China , Fazendas , Nitrogênio/análise , Fósforo , Microbiologia do Solo
13.
Infect Dis Poverty ; 10(1): 31, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731163

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a significant number of mortalities worldwide. COVID-19 poses a serious threat to human life. The clinical manifestations of COVID-19 are diverse and severe and 20% of infected patients are reported to be in a critical condition. A loss in lung function and pulmonary fibrosis are the main manifestations of patients with the severe form of the disease. The lung function is affected, even after recovery, thereby greatly affecting the psychology and well-being of patients, and significantly reducing their quality of life. METHODS: Participants must meet the following simultaneous inclusion criteria: over 18 years of age, should have recovered from severe or critical COVID-19 cases, should exhibit pulmonary fibrosis after recovery, and should exhibit Qi-Yin deficiency syndrome as indicated in the system of traditional Chinese medicine (TCM). The eligible candidates will be randomized into treatment or control groups. The treatment group will receive modern medicine (pirfenidone) plus TCM whereas the control group will be administered modern medicine plus TCM placebo. The lung function index will be continuously surveyed and recorded. By comparing the treatment effect between the two groups, the study intend to explore whether TCM can improve the effectiveness of modern medicine in patients with pulmonary fibrosis arising as a sequelae after SARS-CoV-2 infection. DISCUSSION: Pulmonary fibrosis is one of fatal sequelae for some severe or critical COVID-19 cases, some studies reveal that pirfenidone lead to a delay in the decline of forced expiratory vital capacity, thereby reducing the mortality partly. Additionally, although TCM has been proven to be efficacious in treating pulmonary fibrosis, its role in treating pulmonary fibrosis related COVID-19 has not been explored. Hence, a multicenter, parallel-group, randomized controlled, interventional, prospective clinical trial has been designed and will be conducted to determine if a new comprehensive treatment for pulmonary fibrosis related to COVID-19 is feasible and if it can improve the quality of life of patients. TRIAL REGISTRATION: This multicenter, parallel-group, randomized controlled, interventional, prospective trial was registered at the Chinese Clinical Trial Registry (ChiCTR2000033284) on 26th May 2020 (prospective registered).


Assuntos
COVID-19/complicações , COVID-19/virologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/terapia , SARS-CoV-2 , Antivirais/uso terapêutico , Terapia Combinada , Análise de Dados , Medicina Tradicional Chinesa , Fibrose Pulmonar/diagnóstico , Qualidade de Vida , Resultado do Tratamento
14.
Ying Yong Sheng Tai Xue Bao ; 31(7): 2431-2440, 2020 Jul.
Artigo em Zh | MEDLINE | ID: mdl-32715710

RESUMO

Collapsing gully is a common phenomenon of hydraulic-gravity combined soil erosion in granite hilly area of south China. The study aimed to explore the relationship between soil hydraulics pro-perties and erosion mechanism and the intrinsic controlling factors. The active, semi-stable, and stable types of granite collapsing gullies in southeastern Guangxi were selected to examine the spatial variation of soil saturated hydraulic conductivity and identify the influencing factors. Main results were as follows: 1) Soil saturated hydraulic conductivity of collapsing gullies fluctuated on different positions, with the bottom of collapsing wall showing the minimum value, the top of colluvial deposit showing the maximum, and followed by the top of alluvial fan. 2) All the models being selected to model the soil saturated hydraulic conductivity, including Cosby, Compbell, Julià, and Hypre, performed poor. 3) Results of correlation analysis showed that soil saturated hydraulic conductivity was negatively correlated with capillary porosity and clay content, and positively correlated with non-capillary porosity and sand content. 4) Results of path analysis showed that sand content was the most influencing factor in controlling soil saturated hydraulic conductivity of collapsing gullies, followed by non-capillary porosity and soil bulk density, where sand content and non-capillary porosity exerted a positive effect and bulk density exerted a negative one. Our findings will provide theoretical basis for the mechanistic understanding and prevention of collapsing gullies erosion.


Assuntos
Dióxido de Silício , Solo , China , Condutividade Elétrica
15.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3357-3364, 2020 Oct.
Artigo em Zh | MEDLINE | ID: mdl-33314825

RESUMO

To reveal nutrient resorption characteristics of Robinia pseudoacacia and their driving factors in hilly and gully regions, we measured the concentration of total nitrogen and total phosphorus in leaves and the concentrations and stoichiometry of organic carbon, total nitrogen, total phospho-rus, ammonium, nitrate and available phosphorus in soils of R. pseudoacacia plantations with different stand ages. We analyzed the relationship between leaf nitrogen and phosphorus resorption efficiencies and soil nutrient characteristics. The nutrients in plants and soil changed significantly with stand ages. The total and available phosphorus concentrations were low in the soil. Nitrogen resorption efficiency first increased and then decreased with the increases of stand age, with a range of 48.2%-54.0% and a mean value of 48.5%. Phosphorus resorption efficiency increased significantly with stand age, with a range of 45.2%-49.4% and a mean value of 46.9%. Nitrogen resorption efficiency showed negative response to soil nitrogen and N:P. Phosphorus resorption efficiency was significantly positively correlated to soil N:P and negatively correlated to soil available phosphorus. Our results indicated that soil nutrient availability negatively drove nutrient resorption efficiency. The strategies of leaf nutrient resorption responded strongly to soil N:P due to the N2-fixing effect and P-limitation of R. pseudoacacia.


Assuntos
Robinia , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta , Solo
16.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3647-3656, 2020 Nov.
Artigo em Zh | MEDLINE | ID: mdl-33300714

RESUMO

We examined the stability of soil aggregates in five typical plantations, i.e., Eucalyptus urophylla × E. grandis plantation, Cunninghamia lanceolata plantation, Pinus massoniana plantation, Mytilaria laosensis plantation and Castanopsis hystrix plantation, in the south subtropical China by the Elliott wet sieving and Le Bissonnais (LB) methods. The results showed that the content of water stability aggregate (WR>0.25) was more than 62.2% after wet sieving. The mean weight diameter (MWD) and geometric mean diameter (GMD) of aggregates were 1.58-3.71 mm and 0.57-2.02 mm, respectively, which were the largest in C. lanceolata plantation and the smallest in E. urophylla × E. grandis plantation. Percentage of aggregate destruction (PAD) of five kinds of plantations ranged from 4.6% to 31.5%. The transfer matrix method was used to evaluate the soil aggregates, with the aggregate stability index (ASI) following the order of C. lanceolata plantation > C. hystrix plantation > M. laosensis plantation > P. massoniana plantation > E. urophylla × E. grandis plantation. Under the three treatments of LB method, the FW treatment was the most destructive to the stability of soil aggregates, indicating that dissipation played a major role in the disintegration of soil aggregates. The WS treatment had the least damage to the aggregates. The effect of slow wetting (SW) treatment was between the fast wetting (FW) and wet stirring (WS). Both the MWD and GMD values followed the order of WS>SW>FW, which gradually decreased with the increases of soil depth. The GMD value of aggregates under FW treatment by LB method of five plantations was significantly positively correlated with ASI, MWD and GMD of wet sieving method, indicating that the traditional wet sieving method had a good correlation with FW treatment and was feasible to determine the stability of soil aggregates in the subtropical red soil. Based on the aggregate stability indices of MWD, GMD, PAD and ASI, C. lanceolata plantation was more conducive to the improvement of soil aggregation level, with more stable soil structure than the other four plantations.


Assuntos
Cunninghamia , Pinus , Carbono/análise , China , Solo
17.
Huan Jing Ke Xue ; 41(5): 2416-2424, 2020 May 08.
Artigo em Zh | MEDLINE | ID: mdl-32608861

RESUMO

Soil aggregates are important carriers of soil organic carbon (SOC) accumulation, and play an important role in the evaluation of soil structure and quality. Natural recovery can promote change in soil aggregate structure and quantity via the redistribution of SOC in the aggregates. Natural restoration from farmland is an important vegetation restoration model on the Loess Plateau. The changes in soil aggregate structure and soil carbon stock after natural restoration have received extensive attention. However, little is known about the continuous study of soil changes on the abandoned grassland during the recovery process. Therefore, to understand how SOC accumulates in the process of natural recovery and quantitatively analyze the contribution of aggregates to the total soil carbon pool, we selected four abandoned grasslands of different restoration ages on the Loess Plateau, China, and studied the changes in soil structure, soil total organic carbon (TOC), soil C:N, soil aggregate distribution, soil aggregate stable index (mean weight diameter, MWD; geometric mean diameter, GMD), and aggregate-associated SOC changes as well as their correlations from 0-20 cm and 20-40 cm soil layers in abandoned grasslands. In addition, we calculated the contribution of aggregates with different sizes to soil TOC stock. The results showed that:① natural restoration increased the macroaggregate amount, MWD, and GMD, but decreased the amount of microaggregate and silt-and clay-sized fractions. There are significant differences in the distribution and stability of aggregates between different soil layers; the promotion effect of the surface was higher than that of the subsurface soils. ② In the 42 years after abandoning recovery, soil TOC stock, macaggregate-and mesaggregate-associated SOC stock increased significantly, and varied with soil depth and years of abandonment (1.92 times, 10.2 times, and 3.61 times). In contrast, micaggregate-associated SOC stock decreased significantly, and silt-and clay-sized fractions-associated SOC stock showed no distinct change. In addition, natural restoration promoted the ratio of C:N; nevertheless, the ratio of C:N under the surface showed a reduced phenomenon after 42 years of abandonment. ③ The improvement in soil TOC stock depends primarily on changes in the macaggregate-associated organic carbon stocks, which account for 80% of macaggregate, and the significant increase in the amount of macaggregate is the main reason for the high contribution.The results of our study suggest that natural restoration is conducive to the accumulation of soil organic carbon, and improvement in soil structure and stability. Macroaggregate is the key factor in soil organic carbon accumulation and soil structure improvement in the process of natural restoration.

19.
Huan Jing Ke Xue ; 39(12): 5687-5698, 2018 Dec 08.
Artigo em Zh | MEDLINE | ID: mdl-30628416

RESUMO

The trends of and relationships among the plant community, soil nutrients, and four soil enzymes were investigated after being abandoned for 10, 15, 20, 30, and 45 years to reveal the soil properties during the restoration in the Loess Hilly Region. The results indicate the following ranking of dominant plant community species:Artemisia scoparia→Lespedeza dahurica+Artemisia sacrorum→Artemisia giraldii+irons Artemisia annua→Bothriochloa flaccidum+Artemisia selengensis. The ranking reflects an increase along the chronosequence of abandoned land. Moreover, the ratio of the total species of Compositae, Poaceae, and Leguminosae decreases from 66.67% to 50% and then increases up to 75%. The SOC, TN, TP, AN, AP, and four enzyme activity types (ALP, CAT, UE, and SC) increase but respond differently to restoration, while the stoichiometric ratio fluctuates. In contrast to the number of plant families, genus, species, and plant diversity, Compositae, Poaceae, and Leguminosae have major effects on the soil nutrient and enzyme activity, which explains the total variation of 72.8%, 69.1%, and 66.0%, respectively. The effects of these three families on the soil enzymes are greater than that on soil nutrients. Poaceae and Leguminosae have a positive effect on the nutrient and enzyme activity, while the family Compositae has a negative effect. Overall, the changes of dominant species of grassland communities during restoration significantly affect the soil enzyme and thereby are responsible for the soil nutrient dynamics.


Assuntos
Enzimas/metabolismo , Pradaria , Poaceae , Solo/química , China
20.
Ying Yong Sheng Tai Xue Bao ; 29(6): 1846-1856, 2018 Jun.
Artigo em Zh | MEDLINE | ID: mdl-29974693

RESUMO

We investigated the species composition and diversity of four grassland communities with different slope aspects in the loess hilly area of China. The power law was used to analyze spatial heterogeneity of the community and spatial pattern of the population. The results showed that Artemisia sacrorum was the dominant species and occurred in each site. Other species had different status and contributed differently to the spatial pattern of communities. Moreover, the spatial patterns of communities responded differently to various slope aspects, with the degree of aggregation ranked as sunny > half-sunny > half-shady > shady. The spatial heterogeneity index of community was positively correlated with the Simpson diversity index, but was negatively correlated with Margalef richness, Shannon diversity and Pielou evenness. The relative spatial heterogeneity index of the dominant species (A. sacrorum), sub-dominant species (Lespedeza dahurica and Stipa bungeana), and a few associated species (Artemisia scoparia, Melica scabrosa) were larger than that of the community, which resulted in cluster distribution. However, the relative spatial heterogeneity index of most associated species (Phragmites communis, Sonchus arvensis, and Bothriochloa flaccidum) showed the similar trends with the distribution of the community. In contrast, the relative spatial heterogeneity index of Cephalanoplos segetum, Gueldenstaedtia multiflora and Artemisia giraldii was lower than that of the community. These differences reduced the aggregation degree of the community. In summary, the aggregation degree of community was determined by dominant species, sub-dominant species and occasional species. Specifically, the dominant species, sub-dominant species and some associated species could promote the aggregation of the community, but occasional species would reduce the cluster distribution.


Assuntos
Ecossistema , Pradaria , Artemisia , Biodiversidade , China , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA