Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 30(8): 1769-1779, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33432457

RESUMO

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers.


Assuntos
Amônia , Archaea , Archaea/genética , Bactérias/genética , China , Ecossistema , Humanos , Oxirredução , Filogenia , Solo , Microbiologia do Solo
2.
Front Plant Sci ; 11: 650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536932

RESUMO

The basic helix-loop-helix (bHLH) proteins are a superfamily of transcription factors (TFs) that can bind to specific DNA target sites, playing a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. However, no systemic analysis of bHLH TFs has been reported in banana, a typical climacteric fruit in tropical and subtropical regions. In our study, 259 MabHLH TF genes were identified in the genome of Musa acuminata (A genome), and phylogenetic analysis indicated that these MabHLHs could be classified into 23 subfamilies with the bHLHs from rice and Arabidopsis. The amino acid sequences of the bHLH domain in all MabHLH protein sequences were quite conserved, especially Arg-12, Arg-13, Leu-23, and Leu-79. Distribution mapping results showed that 258 MabHLHs were localized on the 11 chromosomes in the M. acuminata genome. The results indicated that 40.7% of gene duplication events were located in collinear fragments, and segmental duplications might have played a key role in the expansion of MabHLHs. Moreover, the expression profiles of MabHLHs in different fruit development and ripening stages and under various abiotic and biotic stresses were investigated using available RNA-sequencing data to obtain fruit development, ripening-specific, and stress-responsive candidate genes. Finally, a co-expression network of MabHLHs was constructed by weighted gene co-expression network analysis to elucidate the MabHLHs that might participate in important metabolic biosynthesis pathways in banana during development and the response to stress. A total of 259 MabHLHs were identified, and their sequence features, conserved domains, phylogenetic relationships, chromosomal distributions, gene duplications, expression profiles, and co-expression networks were investigated. This study systematically identified the MabHLHs in the M. acuminata genome at the genome-wide level, providing important candidate genes for further functional analysis. These findings improve our understanding of the molecular basis of developmental and stress tolerance in an important banana cultivar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA