Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; 18(12): e2106613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060312

RESUMO

In the pandemic era, the development of high-performance indoor air quality monitoring sensors has become more critical than ever. NO2 is one of the most toxic gases in daily life, which induces severe respiratory diseases. Thus, the real-time monitoring of low concentrations of NO2 is highly required. Herein, a visible light-driven ultrasensitive and selective chemoresistive NO2 sensor is presented based on sulfur-doped SnO2 nanoparticles. Sulfur-doped SnO2 nanoparticles are synthesized by incorporating l-cysteine as a sulfur doping agent, which also increases the surface area. The cationic and anionic doping of sulfur induces the formation of intermediate states in the band gap, highly contributing to the substantial enhancement of gas sensing performance under visible light illumination. Extraordinary gas sensing performances such as the gas response of 418 to 5 ppm of NO2 and a detection limit of 0.9 ppt are achieved under blue light illumination. Even under red light illumination, sulfur-doped SnO2 nanoparticles exhibit stable gas sensing. The endurance to humidity and long-term stability of the sensor are outstanding, which amplify the capability as an indoor air quality monitoring sensor. Overall, this study suggests an innovative strategy for developing the next generation of electronic noses.


Assuntos
Cisteína , Nanopartículas , Luz , Dióxido de Nitrogênio , Enxofre , Compostos de Estanho
2.
Small ; 18(11): e2105611, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064754

RESUMO

Numerous studies have explored new materials for electrocatalysts, but it is difficult to discover materials that surpass the catalytic activity of current commercially available noble metal electrocatalysts. In contrast to conventional transition metal alloys, high-entropy alloys (HEAs) have immense potential to maximize their catalytic properties because of their high stability and compositional diversity as oxygen evolution reactions (OERs). This work presents medium-entropy alloys (MEAs) as OER electrocatalysts to simultaneously satisfy the requirement of high catalytic activity and long-term stability. The surface of MEA electrocatalyst is tailored to suit the OER via anodizing and cyclic voltammetry activation methods. Optimized electrical properties and hydrophilicity of the surface enable an extremely low overpotential of 187 mV for achieving the current density of 10 mA cm-2 alkaline media. Furthermore, a combined photovoltaic-electrochemical system with MEA electrocatalyst and a perovskite/Si tandem solar cell exhibits a solar-to-hydrogen conversion efficiency of 20.6% for an unassisted hydrogen generation system. These results present a new pathway for designing sustainable high efficiency water splitting cells.

3.
Small ; 17(39): e2103457, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453489

RESUMO

To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge-exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge-rich MoS2 nanoplates are elaborately synthesized and deposited on p-Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti-reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p-Si and catalyst layers facilitates the transport of photogenerated electrons under steady-state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p-Si photocathode exhibits significantly improved photoelectrochemical-hydrogen evolution reaction (PEC-HER) performance in alkaline media with a high photocurrent density of 10 mA cm-2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth-abundant Fe60 (NiCo)30 Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm-2 corresponding to 6.6% solar-to-hydrogen efficiency, which is the highest among p-Si photocathodes.

4.
Adv Sci (Weinh) ; 10(6): e2206286, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646498

RESUMO

To realize practical solar hydrogen production, a low-cost photocathode with high photocurrent density and onset potential should be developed. Herein, an efficient and stable overall photoelectrochemical tandem cell is developed with a Cu3 BiS3 -based photocathode. By exploiting the crystallographic similarities between Bi2 S3 and Cu3 BiS3 , a one-step solution process with two sulfur sources is used to prepare the Bi2 S3 -Cu3 BiS3 blended interlayer. The elongated Bi2 S3 -Cu3 BiS3 mixed-phase 1D nanorods atop a planar Cu3 BiS3 film enable a high photocurrent density of 7.8 mA cm-2 at 0 V versus the reversible hydrogen electrode, with an onset potential of 0.9 VRHE . The increased performance over the single-phase Cu3 BiS3 thin-film photocathode is attributed to the enhanced light scattering and charge collection through the unique 1D nanostructure, improved electrical conductivity, and better band alignment with the n-type CdS layer. A solar-to-hydrogen efficiency of 2.33% is achieved under unassisted conditions with a state-of-the-art Mo:BiVO4 photoanode, with excellent stability exceeding 21 h.

5.
ACS Appl Mater Interfaces ; 14(6): 7788-7795, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35040620

RESUMO

Formation of type II heterojunctions is a promising strategy to enhance the photoelectrochemical performance of water-splitting photoanodes, which has been tremendously studied. However, there have been few studies focusing on the formation of type II heterojunctions depending on the thickness of the overlayer. Here, enhanced photoelectrochemical activities of a Fe2O3 film deposited-BiVO4/WO3 heterostructure with different thicknesses of the Fe2O3 layer have been investigated. The Fe2O3 (10 nm)/BiVO4/WO3 heterojunction photoanode shows a much higher photocurrent density compared to the Fe2O3 (100 nm)/BiVO4/WO3 photoanode. The Fe2O3 (10 nm)/BiVO4/WO3 trilayer heterojunction anodes have sequential type II junctions, while a thick Fe2O3 overlayer forms an inverse type II junction between Fe2O3 and BiVO4. Furthermore, the incident-photon-to-current efficiency measured under back-illumination is higher than those measured under front-illumination, demonstrating the importance of the illumination sequence for light absorption and charge transfer and transport. This study shows that the thickness of the oxide overlayer influences the energy band alignment and can be a strategy to improve solar water splitting performance. Based on our findings, we propose a photoanode design strategy for efficient photoelectrochemical water splitting.

6.
Nanomicro Lett ; 14(1): 48, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076762

RESUMO

Although bismuth vanadate (BiVO4) has been promising as photoanode material for photoelectrochemical water splitting, its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes. As a hole blocking layer of BiVO4, titanium dioxide (TiO2) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity. Herein, a crystal facet engineering of TiO2 nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots. We design two types of TiO2 nanostructures, which are nanorods (NRs) and nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, and fabricate BiVO4/TiO2 heterostructure photoanodes. The BiVO4/TiO2 NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO2 NRs. Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination, which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO2 NFs. This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes.

7.
Exploration (Beijing) ; 1(3): 20210012, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37323687

RESUMO

Electrodeposition with a long history has been considered one of the important synthesis techniques for applying various applications. It is a feasible route for fabricating nanostructures using diverse materials due to its simplicity, cost-effectiveness, flexibility, and ease of reaction control. Herein, we mainly focus on the nanoscale electrodeposition with respect to dimension control and three-dimensional (3D) conformality. The principles of electrodeposition, dimensional design of materials, and uniform coatings on various substrates are presented. We introduce that manipulating synthesis parameters such as precursors, applied current/voltage, and additives affect the synthesis reaction, resulting in not only dimensional control of materials from three-dimensional structures to zero-dimensional atomic-level but also conformal coatings on complicated substrates. Various cases regarding morphology control of metal (hydro)oxides, metals, and metal-organic frameworks according to electrodeposition conditions are summarized. Lastly, recent studies of applications such as batteries, photoelectrodes, and electrocatalysts using electrodeposited materials are summarized. This review represents significant advances in the nanoscale design of materials through methodological approaches, which are highly attractive from both academic and commercial aspects.

8.
Nanomicro Lett ; 13(1): 81, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138338

RESUMO

HIGHLIGHTS: MoP nanorod-array catalysts were directly synthesized on graphene passivated silicon photocathodes without secondary phase. Mo-O-C covalent bondings and energy band bending at heterointerfaces facilitate the electron transfer to the reaction sites. Numerous catalytic sites and drastically enhanced anti-reflectance of MoP nanorods contribute to the high solar energy conversion efficiency. Transition metal phosphides (TMPs) and transition metal dichalcogenides (TMDs) have been widely investigated as photoelectrochemical (PEC) catalysts for hydrogen evolution reaction (HER). Using high-temperature processes to get crystallized compounds with large-area uniformity, it is still challenging to directly synthesize these catalysts on silicon photocathodes due to chemical incompatibility at the heterointerface. Here, a graphene interlayer is applied between p-Si and MoP nanorods to enable fully engineered interfaces without forming a metallic secondary compound that absorbs a parasitic light and provides an inefficient electron path for hydrogen evolution. Furthermore, the graphene facilitates the photogenerated electrons to rapidly transfer by creating Mo-O-C covalent bondings and energetically favorable band bending. With a bridging role of graphene, numerous active sites and anti-reflectance of MoP nanorods lead to significantly improved PEC-HER performance with a high photocurrent density of 21.8 mA cm-2 at 0 V versus RHE and high stability. Besides, low dependence on pH and temperature is observed with MoP nanorods incorporated photocathodes, which is desirable for practical use as a part of PEC cells. These results indicate that the direct synthesis of TMPs and TMDs enabled by graphene interlayer is a new promising way to fabricate Si-based photocathodes with high-quality interfaces and superior HER performance.

9.
Adv Sci (Weinh) ; 8(21): e2102458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494726

RESUMO

To achieve a high solar-to-hydrogen (STH) conversion efficiency, delicate strategies toward high photocurrent together with sufficient onset potential should be developed. Herein, an SnS semiconductor is reported as a high-performance photocathode. Use of proper sulfur precursor having weak dipole moment allows to obtain high-quality dense SnS nanoplates with enlarged favorable crystallographic facet, while suppressing inevitable anisotropic growth. Furthermore, the introducing Ga2 O3 layer between SnS and TiO2 in SnS photocathodes efficiently improves the charge transport kinetics without charge trapping. The SnS photocathode reveals the highest photocurrent density of 28 mA cm-2 at 0 V versus the reversible hydrogen electrode. Overall solar water splitting is demonstrated for the first time by combining the optimized SnS photocathode with a Mo:BiVO4 photoanode, achieving a STH efficiency of 1.7% and long-term stability of 24 h. High performance and low-cost SnS photocathode represent a promising new material in the field of photoelectrochemical solar water splitting.

10.
Small Methods ; 5(2): e2000755, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927882

RESUMO

In a polycrystalline material, the grain boundaries (GBs) can be effective active sites for catalytic reactions by providing an electrodynamically favorable surface. Previous studies have shown that grain boundary density is related to the catalytic activity of the carbon dioxide reduction reaction, but there is still no convincing evidence that the GBs provide surfaces with enhanced activity for oxygen evolution reaction (OER). Combination of various electrochemical measurements and chemical analysis reveals the GB density at surface of NiFe electrocatalysts directly affects the overall OER. In situ electrochemical microscopy vividly shows that the OER occurs mainly at the GB during overall reaction. It is observed that the reaction determining steps are altered by grain boundary densities and the meaningful work function difference between the inside of grain and GBs exists. High-resolution transmission electron microscopy shows that extremely high index planes are exposed at the GBs, enhancing the oxygen evolution activity. The specific nature of GBs and its effects on the OER demonstrated in this study can be applied to the various polycrystalline electrocatalysts.

11.
Nat Commun ; 9(1): 303, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29335559

RESUMO

The originally published version of this Article contained an error in the spelling of the author Da-eun Kim, which was incorrectly given as Da-Eun Kim. Furthermore, in Figure 1a, the Cas9 protein was positioned incorrectly during typesetting. These errors have now been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 8(1): 1723, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29167440

RESUMO

The bacteria-derived clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are powerful tools for genome engineering. Recently, in addition to Cas protein engineering, the improvement of guide RNAs are also performed, contributing to broadening the research area of CRISPR-Cas9 systems. Here we develop a fusion guide RNA (fgRNA) that functions with both Cas9 and Cpf1 proteins to induce mutations in human cells. Furthermore, we demonstrate that fgRNAs can be used in multiplex genome editing and orthogonal genome manipulation with two types of Cas proteins. Our results show that fgRNAs can be used as a tool for performing multiple gene manipulations.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Endonucleases/genética , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/genética , Fusão Gênica Artificial/métodos , Proteína 9 Associada à CRISPR , Clostridiales/enzimologia , Clostridiales/genética , Exodesoxirribonucleases/genética , Edição de Genes/métodos , Células HEK293 , Células HeLa , Humanos , Mutação , Fosfoproteínas/genética , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Fator A de Crescimento do Endotélio Vascular/genética
13.
Chem Commun (Camb) ; (48): 5024-6, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17146515

RESUMO

A new composite consisting of TiO(2) nanotubes and CdS nanoparticles, where CdS particles bind covalently to the titania surface through a bifunctional organic linker, was successfully fabricated; this titania nanotube-based composite shows enhanced photocatalytic activity under visible-light irradiation.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Nanoestruturas/química , Nanotubos/química , Sulfetos/química , Titânio/química , Catálise , Luz , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Oxirredução , Paraquat/química , Fotoquímica , Espectrofotometria , Succímero/química , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA