Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biomed Microdevices ; 17(3): 9954, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926017

RESUMO

We developed a simple method to achieve semiquantitative detection of an amphiphilic biosample through measuring the length of flow on a microfluidic analytical device (µPAD) based on paper. When an amphiphilic sample was dripped into a straight microchannel defined with a printed wax barrier (hydrophobic) on filter paper (hydrophilic), the length of flow was affected by the reciprocal effect between the sample, the filter-paper channel and the wax barrier. The flow length decreased with increasing concentration of an amphiphilic sample because of adsorption of the sample on the hydrophobic barrier. Measurement of the flow length enabled a determination of the concentration of the amphiphilic sample. The several tested samples included surfactants (Tween 20 and Triton X-100), oligonucleotides (DNA), bovine serum albumin (BSA), human albumin, nitrite, glucose and low-density lipoprotein (LDL). The results show that the measurement of the flow length determined directly the concentration of an amphiphilic sample, whereas a non-amphiphilic sample was not amenable to this method. The proposed method features the advantages of small cost, simplicity, convenience, directness, rapidity (<5 min) and requirement of only a small volume (5 µL) of sample, with prospective applications in developing areas and sites near patients for testing at a point of care (POCT).


Assuntos
Biopolímeros/análise , Dispositivos Lab-On-A-Chip , Papel , Fitas Reagentes , Tensoativos/análise , Adsorção , Biopolímeros/química , Difusão , Desenho de Equipamento , Análise de Falha de Equipamento , Filtração/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tensoativos/química
2.
Phys Rev E ; 107(6-2): 065105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464647

RESUMO

The effect of wing shape on a forward-flying butterfly via decoupled factors of the wing-swept angle and the aspect ratio (AR) was investigated numerically. The wing-shape effect is a major concern in the design of a microaerial vehicle (MAV). In nature, the wing of a butterfly consists of partially overlapping forewing and hindwing; when the forewing sweeps forward or backward relative to the hindwing, the wing-swept angle and the AR of the entire wing simultaneously change. The effects of the wing-swept angle and AR on aerodynamics are coupled. To decouple their effects, we established wing-shape models with varied combinations of the wing-swept angle and AR based on the experimental measurement of two butterfly species (Papilio polytes and Kallima inachus) and developed a numerical simulation for analysis. In each model, the forewing and hindwing overlapped partially, constructing a single wing. Across the models, the wing-swept angle and AR of these single wings varied sequentially. The results show that, through our models, the effects of the wing-swept angle and AR were decoupled; both have distinct flow mechanisms and aerodynamic force trends and are consistent in the two butterfly species. For a fixed AR, a backward-swept wing increases lift and drag because of the enhanced attachment of the leading-edge vortex with increased strength of the wingtip vortex and the spanwise flow. For a fixed wing-swept angle, a small AR wing increases lift and decreases drag because of the large region of low pressure downstream and the wake-capture effect. Coupling these effects, the largest lift-to-drag ratio occurs for a forward-swept wing with the smallest AR. These results indicate that, in a flapping forward flight, sweeping a forewing forward relative to a hindwing is suitable for cruising. The flow mechanisms and decoupled and coupled effects of the wing-swept angle and the AR presented in this paper provide insight into the flight of a butterfly and the design of a MAV.

3.
Biomimetics (Basel) ; 8(3)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37504175

RESUMO

This work investigates the effects of body angle and wing deformation on the lift of free-flying butterflies. The flight kinematics were recorded using three high-speed cameras, and particle-image velocimetry (PIV) was used to analyze the transient flow field around the butterfly. Parametric studies via numerical simulations were also conducted to examine the force generation of the wing by fixing different body angles and amplifying the chordwise deformation. The results show that appropriately amplifying chordwise deformation enhances wing performance due to an increase in the strength of the vortex and a more stabilized attached vortex. The wing undergoes a significant chordwise deformation, which can generate a larger lift coefficient than that with a higher body angle, resulting in a 14% increase compared to a lower chordwise deformation and body angle. This effect is due to the leading-edge vortex attached to the curved wing, which alters the force from horizontal to vertical. It, therefore, produces more efficient lift during flight. These findings reveal that the chordwise deformation of the wing and the body angle could increase the lift of the butterfly. This work was inspired by real butterfly flight, and the results could provide valuable knowledge about lift generation for designing microaerial vehicles.

4.
Integr Comp Biol ; 61(1): 20-36, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33710279

RESUMO

We developed a numerical model for four-wing self-propulsion to calculate effectively the flight velocity generated with varied wing motions, which satisfactorily verified biological experiments. Through this self-propulsion model, we analyzed the flight velocity of a damselfly (Matrona cyanoptera) at varied phases. The results show that after phase modulation of the wings, the aerodynamic performance of the forewing (FW) is affected by the incoming flow and an effective angle of attack, whereas that of the hindwing (HW) is dominated by the vortex interaction and induced flow generated by the shed vortex of the FW. Cooperating with the flow interaction, in stable flight, the HW in the lead phase has a larger vertical velocity, whereas the FW in the lead phase has a larger horizontal velocity. Regarding the aerodynamic efficiency, the FW in the lead phase has greater horizontal efficiency, whereas the HW in the lead phase has greater vertical efficiency; the overall efficiency does not vary with the phase. This work interprets that a dragonfly adopts the HW in the lead phase to generate a larger lift, thus supporting the larger body weight, whereas a damselfly adopts the FW in the lead phase to have a greater forward velocity, which can supplement the lack of flapping frequency.


Assuntos
Voo Animal , Odonatos , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Movimento (Física) , Asas de Animais
5.
R Soc Open Sci ; 8(8): 202172, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34457326

RESUMO

Unlike other insects, a butterfly uses a small amplitude of the wing-pitch motion for flight. From an analysis of the dynamics of real flying butterflies, we show that the restrained amplitude of the wing-pitch motion enhances the wake-capture effect so as to enhance forward propulsion. A numerical simulation refined with experimental data shows that, for a small amplitude of the wing-pitch motion, the shed vortex generated in the downstroke induces air in the wake region to flow towards the wings. This condition enables a butterfly to capture an induced flow and to acquire an additional forward propulsion, which accounts for more than 47% of the thrust generation. When the amplitude of the wing-pitch motion exceeds 45°, the flow induced by the shed vortex drifts away from the wings; it attenuates the wake-capture effect and causes the butterfly to lose a part of its forward propulsion. Our results provide one essential aerodynamic feature for a butterfly to adopt a small amplitude of the wing-pitch motion to enhance the wake-capture effect and forward propulsion. This work clarifies the variation of the flow field correlated with the wing-pitch motion, which is useful in the design of wing kinematics of a micro-aerial vehicle.

6.
Lab Chip ; 10(4): 499-504, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20126691

RESUMO

A wettability gradient to transport a droplet across superhydrophobic to hydrophilic surfaces is fabricated on combining a structure gradient and a self-assembled-monolayer (SAM) gradient. The combination of these two gradients is realized with a simple but versatile SAM technique, in which the textured silicon wafer strip is placed vertically in a bottle that contains a decyltrichlorosilane solution to form concurrently a saturated SAM below the liquid surface and a wettability gradient above. The platform fabricated in this way has a water-contact angle from 151.2 degrees to 39.7 degrees; the self-transport distance is hence increased significantly to about 9 mm. A theoretical model that approximates the shape of a moving drop to a spheroidal cap is developed to predict the self-transport behavior. Satisfactory agreement is shown for most regions except where the hysteresis effect is unmeasurable and an unsymmetrical deformation occurs. A double-directional gradient surface to alter the direction of movement of a droplet is also realized. The platforms we developed serve not only to transport a fluid over a long distance but also for a broad spectrum of biomedical applications such as protein adsorption, cell adhesion and DNA-based biosensors.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Procedimentos Analíticos em Microchip/métodos , Microtecnologia/métodos , Técnicas Biossensoriais , DNA/química , DNA/metabolismo , Difusão , Movimento (Física) , Silício/química , Propriedades de Superfície , Volatilização , Molhabilidade
7.
Lab Chip ; 10(22): 3149-56, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20922226

RESUMO

We investigated the dynamics of head-on collisions between a moving droplet and a stationary droplet on a surface with a wettability gradient. The mixing of fluids is achieved passively through convective mass transfer caused by the release of surface energy during coalescence, and also through diffusive mass transfer. The coalescence dynamics were visualized with a high-speed camera; the internal flow patterns were resolved with measurement of micro-PIV (particle image velocimetry). The results show that the released surface energy creates a pair recirculation flow inside the merged droplet when the stationary droplet is placed near the gradient, whereas most released surface energy is converted into oscillation when the stationary droplet is far from the gradient. This distinction is attributed to the motion of the contact line during coalescence. The mixing of fluorescently labeled oligonucleotides in these two modes is revealed with confocal micro-laser induced fluorescence technique. The results of 3D scans demonstrate that the motion of the contact line during coalescence distributes the fluids in a complicated manner, thus beneficial for mixing. This mechanism of enhanced mixing is applicable also for platforms other than a surface with a wettability gradient; prospective applications include improving the mixing of biochemical fluids.

8.
Lab Chip ; 10(19): 2583-7, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20689861

RESUMO

Mobile hybridization is a concept proposed and verified herein. We have designed a microfluidic device that is capable of enhancing passive mixing through the morphology of micro-structures, positioned along the channels of the device. We investigated the capability of these structures to promote mobile hybridization of fluorophore-labeled target oligonucleotides to oligonucleotide gold-nanoparticle (Au-NP) probes. This process is monitored with fluorescence through the quenching of the fluorescent signal within the device as the target oligonucleotides become bound to the Au-NP probes. We evaluated the fluorescent intensity of a sample image that showed enhanced probability of mobile hybridization of the samples, which was completed in about 7.2 s. Mobile hybridization is thus much more effective than traditional static hybridization (reaction overnight) limited by molecular diffusion. This approach promises an improved hybridization of samples with these probes, and is beneficial for microfluidic-based systems for biomedical detection.


Assuntos
DNA/análise , DNA/química , Ouro/química , Microfluídica/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , DNA/genética , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Phys Rev E ; 102(6-1): 062407, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466078

RESUMO

Butterflies fly with an abdomen oscillating relative to the thorax; the abdominal oscillation causes body parts to undulate translationally relative to the center of mass of a butterfly, which could generate a significant effect on flight. Based on experimental measurements, we created a numerical model to investigate this effect in a free-flying butterfly (Idea leuconoe). We fixed the motions of wing-flapping and thorax-pitching, and parametrized the abdominal oscillation by varied oscillating phase. To concentrate the analysis on translational dynamics, we used a motion of a thorax-abdomen node, a joint that the thorax and the abdomen rotate about, to express the translational motion of body parts relative to the center of mass. The results show that the abdominal oscillation enhances lift and thrust via the translational motion of the thorax-abdomen node relative to the center of mass. With the abdominal oscillating phase recorded from real butterflies, the abdominal oscillation causes the thorax-abdomen node to move downward relative to the center of mass in downstroke and move upward relative to the center of mass in upstroke. This constructive movement amplifies the wing-flapping speed relative to the center of mass, which enhances the angle of attack and the strength of leading- and trailing-edge vortices on the wings. The wings thereby generate increased values of instantaneous lift and thrust by 50.32% and 32.57% compared to the case of no abdominal oscillation. Natural butterflies are stated to utilize a particular phase offset of abdominal oscillation to fly. With comparing varied oscillating phases, only the abdominal oscillating phase recorded from natural butterflies produces the best constructive effect on the translational motion of thorax-abdomen node, which maximizes the lift and thrust generated on the wings. It clarifies that butterflies use this specific range of abdominal oscillating phase to regulate the translational motion between the thorax-abdomen node and the center of mass to enhance flight. Our work reveals the translational mechanism of the abdominal oscillation, which is as important as the thorax-pitching effect. The findings in this work provide insight into the flight of butterflies and the design of micro aerial vehicles.


Assuntos
Abdome/fisiologia , Borboletas , Modelos Biológicos , Tórax/fisiologia , Animais , Fenômenos Biomecânicos , Voo Animal , Asas de Animais
10.
Bioinspir Biomim ; 16(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33075754

RESUMO

We investigated the effect of the wing-wing interaction, which is one key aspect of flight control, of damselflies (Matrona cyanopteraandEuphaea formosa) in forward flight that relates closely to their body morphologies and wing kinematics. We used two high-speed cameras aligned orthogonally to measure the flight motions and adopted 3D numerical simulation to analyze the flow structures and aerodynamic efficiencies. The results clarify the effects of wing-wing interactions, which are complicated combinations of biological morphology, wing kinematics and fluid dynamics. As the amplitude of the hindwing ofM. cyanopterais larger than that ofE. formosa, the effect of the wing-wing interaction is more constructive. Restricted by the body morphology ofE. formosa, the flapping range of the hindwing is below the body. With the forewing in the lead, the hindwing is farther from the forewing, which is not susceptible to the wake of the forewing, and enables superior lift and thrust. Because of the varied rotational motions, the different shed direction of the wakes of the forewings causes the optimal thrust to occur in different wing phases. Because of its biological limitations, a damselfly can use an appropriate phase to fulfill the desired flight mode. The wing-wing interaction is a compromise between lift efficiency and thrust efficiency. The results reveal that a damselfly with the forewing in the lead can have an effective aerodynamic performance in flight. As an application, in the design concept of a micro-aircraft, increasing the amplitude of the hindwing might enhance the wing-wing interaction, thus controlling the flight modes.


Assuntos
Odonatos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Voo Animal , Modelos Biológicos , Asas de Animais
11.
Sci Rep ; 9(1): 15146, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641168

RESUMO

A visual DNA diagnosis with a rapid and simple procedure has been developed on integrating recombinase polymerase amplification (RPA) and a gold nanoparticle (AuNP) probe. The entire process is implemented in only one tube with no precision instrument and requires in total 20 min to amplify a DNA fragment with RPA and to discriminate a DNA fragment with an AuNP probe. The result in various colors is directly observable with the naked eye. Through discovering a small DNA fragment of Tomato yellow leaf curl virus (TYLCV), this system can detect one copy per microlitre of virus in a pure isolate of extracted DNA and can readily identify an infected plant with a healthy appearance. This system hence provides a highly sensitive and stable DNA diagnosis. This visual method has a potential for disease diagnosis and prognostication in the field based on advantages of simplicity, high speed, portability and sensitivity.


Assuntos
Begomovirus/genética , DNA Viral/análise , Ouro/química , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase/métodos , Recombinases/metabolismo , Begomovirus/fisiologia , Colorimetria , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Reprodutibilidade dos Testes
12.
Phys Rev E ; 100(6-1): 063102, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962416

RESUMO

In this work we studied the differences in flight kinematics and aerodynamics that could relate to differences in wing morphologies of a dragonfly and a damselfly. The damselflies and dragonflies normally fly with the fore wing or hind wing in the lead, respectively. The wing of the damselfly is petiolate, which means that the wing root is narrower than that of the dragonfly. The influence of the biological morphology between the damselfly and the dragonfly on their hovering strategies is worthy of clarification. The flight motions of damselflies and dragonflies in hovering were recorded with two high-speed cameras; we analyzed the differences between their hovering motions using computational fluid dynamics. The distinct mechanisms of the hovering flight of damselflies (Matrona cyanoptera) and dragonflies (Neurothemis ramburii) with different phase lags between fore and hind wings were deduced. The results of a comparison of the differences of wing phases in hovering showed that the rotational effect has an important role in the aerodynamics; the interactions between fore and hind wings greatly affect their vortex structure and flight performance. The wake of a damselfly sheds smoothly because of slender petiolation; a vertical force is generated steadily during the stage of wing translation. Damselflies hover with a longer translational phase and a larger flapping amplitude. In contrast, the root vortex of a dragonfly impedes the shedding of wake vortices in the upstroke, which results in the loss of a vertical force; the dragonfly hence hovers with a large amplitude of wing rotation. These species of Odonata insects developed varied hovering strategies to fit their distinct biological morphologies.


Assuntos
Voo Animal , Odonatos/fisiologia , Ar , Animais
13.
Phys Rev E ; 93(3): 033124, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078464

RESUMO

In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.


Assuntos
Borboletas/fisiologia , Voo Animal , Rotação , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Asas de Animais/fisiologia
14.
J Vis Exp ; (115)2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27768033

RESUMO

A simple and visual method to detect multi-nucleotide polymorphism (MNP) was performed on a pneumatic droplet manipulation platform on an open surface. This approach to colorimetric DNA detection was based on the hybridization-mediated growth of gold nanoparticle probes (AuNP probes). The growth size and configuration of the AuNP are dominated by the number of DNA samples hybridized with the probes. Based on the specific size- and shape-dependent optical properties of the nanoparticles, the number of mismatches in a sample DNA fragment to the probes is able to be discriminated. The tests were conducted via droplets containing reagents and DNA samples respectively, and were transported and mixed on the pneumatic platform with the controlled pneumatic suction of the flexible PDMS-based superhydrophobic membrane. Droplets can be delivered simultaneously and precisely on an open-surface on the proposed pneumatic platform that is highly biocompatible with no side effect of DNA samples inside the droplets. Combining the two proposed methods, the multi-nucleotide polymorphism can be detected at sight on the pneumatic droplet manipulation platform; no additional instrument is required. The procedure from installing the droplets on the platform to the final result takes less than 5 min, much less than with existing methods. Moreover, this combined MNP detection approach requires a sample volume of only 10 µl in each operation, which is remarkably less than that of a macro system.


Assuntos
Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Nucleotídeos/genética , Colorimetria/instrumentação , DNA/química , DNA/genética , Humanos , Nanopartículas , Hibridização de Ácido Nucleico , Polimorfismo de Nucleotídeo Único
15.
Lab Chip ; 5(10): 1140-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16175271

RESUMO

The effects of geometric parameters on the mixing performance of a staggered herringbone mixer (SHM) with patterned grooves are numerically investigated. Combining use of the software package CFD-ACE+ and the Taguchi method provides a powerful and systematic approach for research on microfluidics. An orthogonal array L9(3(4)) is established for parameters introduced by the groove geometry; in total 9 cases are simulated. Analyses of the mixing phenomena, geometric parameter, pressure loss and flow rate through grooves are conducted. The modes of fluid motion and dominant mechanisms of mixing within the SHM are observed and ascertained. Although the depth ratio and the asymmetry index of the groove are found to be dominant geometric parameters, the rate of flow within the groove is verified to be the most significant factor that affects the mixing performance of a SHM. To date, the effects of the parameters are evaluated within specified ranges, and the true optimum design has yet to be discovered.


Assuntos
Biotecnologia/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Misturas Complexas , Simulação por Computador , Desenho Assistido por Computador , Difusão , Desenho de Equipamento , Microquímica , Microfluídica , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Movimento (Física) , Nanotecnologia , Análise Numérica Assistida por Computador , Pressão , Reologia , Software
16.
Artigo em Inglês | MEDLINE | ID: mdl-26465553

RESUMO

A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.


Assuntos
Borboletas , Voo Animal , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Borboletas/fisiologia , Simulação por Computador , Voo Animal/fisiologia , Asas de Animais
17.
Lab Chip ; 14(12): 2124-30, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24811036

RESUMO

A manufacturing approach for paper-based fluidic batteries was developed based on the origami principle (three-dimension paper folding). Microfluidic channels were first created on a filter paper by a wax-printing method. Copper and aluminium sheets were then glued onto the paper as electrodes for the redox reaction. After the addition of copper sulphate and aluminium chloride, commonly available cellophane paper was attached as a membrane to separate the two electrodes. The resulting planar paper sheets were then folded into three-dimensional structures and compiled as a single battery with glue. The two half reactions (Al/Al(3+) and Cu/Cu(2+)) in the folded batteries provided an open-circuit potential from 0.82 V (one cell) to 5.0 V (eight cells in series) depending on the origami design. The prepared battery can provide a stable current of 500 µA and can light a regular LED for more than 65 min. These paper-based fluidic batteries in a set can also be compiled into a portable power bank to provide electric power for many electric or biomedical applications, such as LED lights and electrophoretic devices, as we report here.

18.
Bioinspir Biomim ; 8(4): 046010, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24200672

RESUMO

Experimental methods and related theories to evaluate the lift force for a flyer are established, but one can traditionally acquire only the magnitude of that lift. We here proffer an analysis based on kinematic theory and experimental visualization of the flow to complete a treatment of the aerodynamic force affecting a hovering flyer that generates a lift force approximately equal to its weight, and remains nearly stationary in midair; the center and direction of the aerodynamic force are accordingly determined with some assumptions made. The principal condition to resolve the problem is the stabilization of the vision of a flyer, which is inspired by a hovering passerine that experiences a substantial upward swing during downstroke periods while its eye remains stabilized. Viewing the aerodynamic force with a bird's eye, we find that the center and direction of this aerodynamic force vary continuously with respect to the lift force. Our results provide practical guidance for engineers to enhance the visual stability of surveillance cameras incorporated in micro aerial vehicles.


Assuntos
Aves/fisiologia , Movimentos Oculares/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Asas de Animais/fisiologia , Animais , Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Estresse Mecânico , Viscosidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-23496548

RESUMO

Some small birds typically clap their wings ventrally, particularly during hovering. To investigate this phenomenon, we analyzed the kinematic motion and wake flow field of two passerine species that hover with the same flapping frequency. For these two birds, the ventral clap is classified as direct and cupping. Japanese White-eyes undertake a direct clap via their hand wings, whereas Gouldian Finches undertake a cupping clap with one wing overlaying the other. As a result of their morphological limitation, birds of both greater size and wing span cup their wings to increase the wing speed during a ventral clap because of the larger wing loading. This morphological limitation leads also to a structural discrepancy of the wake flow fields between these two passerine species. At the instant of clapping, the direct clap induces a downward air velocity 1.68 times and generates a weight-normalized lift force 1.14 times that for the cupping clap. The direct clap produces a small upward jet and a pair of counter-rotating vortices, both of which abate the transient lift at the instant of clapping, but they are not engendered by the cupping clap. The aerodynamic mechanisms generated with a ventral clap help the small birds to avoid abrupt body swinging at the instant of clapping so as to maintain their visual stability during hovering.


Assuntos
Tentilhões/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Simulação por Computador
20.
Biosens Bioelectron ; 50: 8-13, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23827371

RESUMO

A novel aggregation-based biosensing method to achieve detection of oligonucleotides in a pinched-flow fractionation (PFF) microseparator was developed. Employing functionalized polystyrene microspheres, this method is capable of the direct detection of the concentration of a specific DNA sequence. The label-free target DNA hybridizes with probe DNA of two kinds on the surface of the microspheres and causes the formation of an aggregate, thus increasing the average size of the aggregate particles. On introducing the sample into a PFF microseparator, the aggregate particles locate at a specific position depending on the size of the aggregate. Through a multi-outlet asymmetric PFF microseparator, the aggregate particles become separated according to outlets. Because the size of the aggregate particles is proportional to the concentration of the target DNA, a rapid quantitative analysis is achievable with an optical microscope. A biological dose-response curve with concentration in a dynamic range 0.33-10nM has been achieved; the limit of detection is between 33 and 330 pM. The specificity of the method and the potential to detect single-nucleotide polymorphism (SNP) of known concentration were examined. The method features simple, direct and cheap detection, with a prospect of detecting other biochemical samples with distinct aggregation behavior, such as heavy-metal ions, bacteria and proteins.


Assuntos
Técnicas Biossensoriais/instrumentação , Fracionamento Químico/instrumentação , DNA/análise , DNA/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Microesferas , Poliestirenos/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA