RESUMO
SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a key role in mediating a variety of plant biological processes. Currently, the function of the SNARE gene family in phytohormonal and abiotic stress treatments in grapevine is currently unknown, making it worthwhile to characterize and analyze the function and expression of this family in grapevine. In the present study, 52 VvSNARE genes were identified and predominantly distributed on 18 chromosomes. Secondary structures showed that the VvSNARE genes family irregular random coils and α-helices. The promoter regions of the VvSNARE genes were enriched for light-, abiotic-stress-, and hormone-responsive elements. Intraspecific collinearity analysis identified 10 pairs collinear genes within the VvSNARE family and unveiled a greater number of collinear genes between grapevine and apple, as well as Arabidopsis thaliana, but less associations with Oryza sativa. Quantitative real-time PCR (qRT-PCR) analyses showed that the VvSNARE genes have response to treatments with ABA, NaCl, PEG, and 4 °C. Notably, VvSNARE2, VvSNARE14, VvSNARE15, and VvSNARE17 showed up-regulation in response to ABA treatment. VvSNARE2, VvSNARE15, VvSNARE18, VvSNARE19, VvSNARE20, VvSNARE24, VvSNARE25, and VvSNARE29 exhibited significant up-regulation when exposed to NaCl treatment. The PEG treatment led to significant down-regulation of VvSNARE1, VvSNARE8, VvSNARE23, VvSNARE25, VvSNARE26, VvSNARE31, and VvSNARE49 gene expression. The expression levels of VvSNARE37, VvSNARE44, and VvSNARE46 were significantly enhanced after exposure to 4 °C treatment. Furthermore, subcellular localization assays certified that VvSNARE37, VvSNARE44, and VvSNARE46 were specifically localized at the cell membrane. Overall, this study showed the critical role of the VvSNARE genes family in the abiotic stress response of grapevines, thereby providing novel candidate genes such as VvSNARE37, VvSNARE44, and VvSNARE46 for further exploration in grapevine stress tolerance research.