Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 607(7920): 708-713, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896645

RESUMO

Most engineering materials are based on multiphase microstructures produced either through the control of phase equilibria or by the fabrication of different materials as in thin-film processing. In both processes, the microstructure relaxes towards equilibrium by mismatch dislocations (or geometric misfit dislocations) across the heterophase interfaces1-5. Despite their ubiquitous presence, directly probing the dynamic action of mismatch dislocations has been unachievable owing to their buried nature. Here, using the interfacial transformation of copper oxide to copper as an example, we demonstrate the role of mismatch dislocations in modulating oxide-to-metal interfacial transformations in an intermittent manner, by which the lateral flow of interfacial ledges is pinned at the core of mismatch dislocations until the dislocation climbs to the new oxide/metal interface location. Together with atomistic calculations, we identify that the pinning effect is associated with the non-local transport of metal atoms to fill vacancies at the dislocation core. These results provide mechanistic insight into solid-solid interfacial transformations and have substantial implications for utilizing structural defects at buried interfaces to modulate mass transport and transformation kinetics.

2.
Small ; 20(11): e2305746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941496

RESUMO

Redox-induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi-interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2 gas, a reaction pathway of CuO → monoclinic m-Cu4 O3 → Cu2 O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2 O/m-Cu4 O3 interface shows a diffuse-type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m-Cu4 O3 /CuO transformation. Together with atomistic modeling, it is shown that such a multi-interface transformation results from the surface-reaction-induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2 O and m-Cu4 O3 , and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.

3.
Nanotechnology ; 35(6)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37918028

RESUMO

Aberration-corrected electron-beam lithography (AC-EBL) using ultra-thin electron transparent membranes has achieved single-digit nanometer resolution in two widely used electron-beam resists: poly (methyl methacrylate) (PMMA) and hydrogen silsesquioxane. On the other hand, AC-EBL implementation on thick, electron-opaque substrates is appealing for conventional top-down fabrication of quantum devices with nanometer-scale features. To investigate the performance of AC-EBL on thick substrates, we measured the lithographic point spread function of a 200 keV aberration-corrected scanning transmission electron microscope by defining both positive and negative patterns in PMMA thin films, spin-cast on thick SiO2/Si substrates. We present the problems encountered during pre-exposure beam focusing and discuss methods to overcome them. In addition, applying some of these methods using commercial 50 nm thick SiNXmembranes with thick Si support frames, we printed arrays of holes in PMMA with pitches around 26 nm on SiNX/Si substrates with increasing Si thickness. Our results show that proximity effects from even 50 nm thick SiNXmembranes limit hole arrays to 20 nm pitch; however, down to this limit, the effect of the substrate thickness on the pattern quality is minimal. These results highlight the need for novel resists less susceptible to proximity effects, or resists which can be used directly, after development, as the dielectric material in periodic gates in 2D quantum devices.

4.
Nano Lett ; 22(3): 1075-1082, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35086335

RESUMO

How defects such as surface steps affect oxidation, especially initial oxide formation, is critical for nano-oxide applications in catalysis, electronics, and corrosion. We posit that surface reconstruction, a crucial intermediate oxidation step, can highlight initial oxide formation preferences and thus enable bridging the temporal and spatial scale gaps between atomistic simulations and experiments. We investigate the surface-step-induced uneven surface oxidation on Cu(100) and Cu(110), using atomic-scale in situ environmental transmission electron microscopy experiments with dynamical gas control and advanced data processing. We show that the Cu(100)-O (2√2 × âˆš2)R45° missing row reconstruction strongly favors upper terraces over lower terraces, while Cu(110)-O (2 × 1) "added row" reconstructions indicate slight preferences for upper or lower terraces, depending on oxygen concentration. The observed formation site preference and its variation with surface orientation and oxygen concentration are mechanistically explained by Ehrlich-Schwöbel barrier differences for oxygen diffusion on stepped surfaces.

5.
Proc Natl Acad Sci U S A ; 116(27): 13215-13220, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209027

RESUMO

Research on plasmons of gold nanoparticles has gained broad interest in nanoscience. However, ultrasmall sizes near the metal-to-nonmetal transition regime have not been explored until recently due to major synthetic difficulties. Herein, intriguing electron dynamics in this size regime is observed in atomically precise Au333(SR)79 nanoparticles. Femtosecond transient-absorption spectroscopy reveals an unprecedented relaxation process of 4-5 ps-a fast phonon-phonon relaxation process, together with electron-phonon coupling (∼1 ps) and normal phonon-phonon coupling (>100 ps) processes. Three types of -R capped Au333(SR)79 all exhibit two plasmon-bleaching signals independent of the -R group as well as solvent, indicating plasmon splitting and quantum effect in the ultrasmall core of Au333(SR)79 This work is expected to stimulate future work on the transition-size regime of nanometals and discovery of behavior of nascent plasmons.

6.
Microsc Microanal ; 27(4): 758-766, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018478

RESUMO

Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as "gas cooling ability (H)", determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.

7.
Phys Chem Chem Phys ; 22(5): 2738-2742, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960012

RESUMO

The structural dynamics of Cu catalyst regeneration from Cu2O under methanol is poorly understood. In situ Environmental TEM on Cu(100)-supported Cu2O islands reveals a transition from anisotropic to isotropic shrinking during reduction. Two-stage reduction is statistically supported and explained by preferential methanol reactivity on Cu2O nano-islands with DFT simulations.

8.
Nat Mater ; 17(1): 56-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180772

RESUMO

Surface segregation-the enrichment of one element at the surface, relative to the bulk-is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

9.
Chemistry ; 24(46): 12037-12043, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011117

RESUMO

Bimetallic nanoparticles are widely studied, for example in catalysis. However, possible restructuring in the environment of use, such as segregation or alloying, may occur. Taken individually, state-of-the-art analytical tools fail to give an overall picture of these transformations. This study combines an ensemble analysis (near-ambient-pressure X-ray photoelectron spectroscopy) with a local analysis (environmental transmission electron microscopy) to provide an in situ description of the restructuring of core-shell nickel-cobalt nanoparticles exposed to cycles of reduction and oxidation. It reveals a partial surface alloying accompanied by fragmentation of the shell into smaller clusters, which is not reversible. Beyond this case study, the methodology proposed here should be applicable in a broad range of studies dealing with the reactivity of mono- or bi-metallic metal nanoparticles.

14.
J Am Chem Soc ; 139(3): 1077-1080, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28068082

RESUMO

Electrocatalytic water splitting to produce hydrogen comprises the hydrogen and oxygen evolution half reactions (HER and OER), with the latter as the bottleneck process. Thus, enhancing the OER performance and understanding the mechanism are critically important. Herein, we report a strategy for OER enhancement by utilizing gold nanoclusters to form cluster/CoSe2 composites; the latter exhibit largely enhanced OER activity in alkaline solutions. The Au25/CoSe2 composite affords a current density of 10 mA cm-2 at small overpotential of ∼0.43 V (cf. CoSe2: ∼0.52 V). The ligand and gold cluster size can also tune the catalytic performance of the composites. Based upon XPS analysis and DFT simulations, we attribute the activity enhancement to electronic interactions between nanocluster and CoSe2, which favors the formation of the important intermediate (OOH) as well as the desorption of oxygen molecules over Aun/CoSe2 composites in the process of water oxidation. Such an atomic level understanding may provide some guidelines for design of OER catalysts.

15.
Small ; 13(43)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28737005

RESUMO

Hydrogen generation via electrocatalytic water splitting holds great promise for future energy revolution. It is desirable to design abundant and efficient catalysts and achieve mechanistic understanding of hydrogen evolution reaction (HER). Here, this paper reports a strategy for improving HER performance of molybdenum disulfide (MoS2 ) via introducing gold nanoclusters as a cocatalyst. Compared to plain MoS2 nanosheets, the Au25 (SR)18 /MoS2 nanocomposite exhibits enhanced HER activity with a small onset potential of -0.20 V (vs reversible hydrogen electrode) and a higher current density of 59.3 mA cm-2 at the potential of -0.4 V. In addition to the interfacial interaction between nanoclusters and MoS2 , the interface between the Au25 core and the surface ligands (thiolate vs selenolate) is also discovered to distinctly affect the catalytic performance. This work highlights the promise of metal nanoclusters in boosting the HER performance via tailoring the interfacial electronic interactions between gold nanoclusters and MoS2 nanosheets, as well as the interface between metal core and surface ligands.

16.
Angew Chem Int Ed Engl ; 56(38): 11394-11398, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28710839

RESUMO

Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.

17.
Phys Rev Lett ; 113(13): 136104, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302908

RESUMO

We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

18.
J Am Chem Soc ; 135(35): 13062-72, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23869582

RESUMO

We show that the noncrystalline-to-crystalline transition of supported Pt nanoparticles (NPs) in the subnanometer to nanometer size range is statistical in nature, and strongly affected by particle size, support, and adsorbates (here we use H2). Unlike in the bulk, a noncrystalline phase exists and is stable in small NPs, reflecting a general mesoscopic feature. Observations of >3000 particles by high-resolution transmission electron microscopy show a noncrystalline-to-crystalline transition zone that is nonabrupt; there is a size regime where disordered and ordered NPs coexist. The NP size at which this transition occurs is strongly dependent on both the adsorbate and the support, and this effect is general for late 5d transition metals. All results are reconciled via a statistical description of particle-support-adsorbate interactions.


Assuntos
Nanopartículas Metálicas/química , Platina/química , Cristalização , Tamanho da Partícula , Propriedades de Superfície
19.
Chem Soc Rev ; 41(24): 8179-94, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23120754

RESUMO

Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are popular and powerful techniques used to characterize heterogeneous catalysts. Rapid developments in electron microscopy--especially aberration correctors and in situ methods--permit remarkable capabilities for visualizing both morphologies and atomic and electronic structures. The purpose of this review is to summarize the significant developments and achievements in this field with particular emphasis on the characterization of catalysts. We also highlight the potential and limitations of the various methods, describe the need for synergistic and complementary tools when characterizing heterogeneous catalysts, and conclude with an outlook that also envisions future needs in the field.

20.
Phys Rev Lett ; 109(23): 235502, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368225

RESUMO

Using in situ atomic-resolution electron microscopy observations, we report observations of the oxide growth during the oxidation of stepped Cu surfaces. Oxidation occurs via direct growth of Cu(2)O on flat terraces with Cu adatoms detaching from steps and diffusing across the terraces. This process involves neither reconstructive oxygen adsorption nor oxygen subsurface incorporation and is rather different from the mechanism of solid-solid transformation of bulk oxidation that is most commonly postulated. These results demonstrate that the presence of surface steps can promote the development of a flat metal-oxide interface by kinetically suppressing subsurface oxide formation at the metal-oxide interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA