Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38940781

RESUMO

Background: Osteoporosis (OP) is a chronic skeletal disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in increased bone fragility and a higher risk of fractures. It is a significant public health concern, particularly among postmenopausal women and older adults. The imbalance between bone formation and resorption is the fundamental cause of OP. Current clinical drugs for OP have limited efficacy and can cause side effects. Therefore, there is a need to explore alternative treatments and investigate their mechanisms to improve OP management. The Xianling Gubao capsule, a traditional Chinese medicine, is commonly used to treat OP by tonifying the kidney. However, the specific mechanism of action of the Xianling Gubao capsule in improving OP remains unclear, necessitating further research in this area. Methods: The N6-methyladenosine (m6A) content was evaluated by dot blot and m6A ribonucleic acid (RNA) methylation assay kit. The contents of methyltransferase-like 3 (METTL3), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and bone gamma-carboxyglutamate protein (BGLAP) were appraised by quantitative Reverse Transcription polymerase chain reaction (qRT-PCR) and western blot. The bilateral ovariectomy (OVX) method was used to establish an animal model of OP. OP bone marrow mesenchymal stem cells (OP-BMSCs) were extracted from mice in the OVX group by the whole bone marrow method. METTL3 overexpression and control vectors were transfected to OP-BMSCs using X-tremeGENE HP DNA Transfection Reagent. The ALP activity in OP-BMSCs was assessed by ALP staining. The calcium nodules in OP-BMSCs were detected by Alizarin Red S (ARS) assay. The Xianling Gubao capsule solution was employed to gavage mice, and the drug-containing serum was used to treat OP-BMSCs. Dot blot allows for the assessment of relative levels of m6A modification. The m6A RNA methylation assay kit is a specialized kit designed to quantitatively measure m6A levels in RNA samples. qRT-PCR allows for the measurement of mRNA levels of target genes. Western blot is used to detect and quantify specific proteins in a sample, and provides information about protein expression levels. OVX mimics the hormonal changes occurring in postmenopausal women and leads to bone loss and osteoporotic conditions in animals. This model allows for the investigation of the effects of the Xianling Gubao capsule on OP in a controlled experimental setting. Results: The m6A modification and METTL3, RUNX2, ALP, and BGLAP levels were reduced in bone samples of patients with OP and OVX mice compared with the corresponding control groups. Upregulated METTL3 enhanced the osteogenic ability of OP-BMSCs. METTL3 overexpression obviously increased m6A modification and METTL3, RUNX2, ALP, and BGLAP levels in OP-BMSCs. Xianling Gubao capsule treatment could weaken the impact of OP in mice by regulating the m6A modification and METTL3, RUNX2, ALP, and BGLAP levels. Serum containing Xianling Gubao capsule could enhance the osteogenic capability of OP-BMSCs and boost METTL3, RUNX2, ALP, and BGLAP levels. Treatment with the Xianling Gubao capsule shows promising effects in attenuating the impact of OP. The capsule is found to regulate m6A modification and increase the levels of METTL3, RUNX2, ALP, and BGLAP in OP-BMSCs. This indicates that the Xianling Gubao capsule may rescue the diminished osteogenic capability of OP-BMSCs by modulating METTL3. These findings suggest that the Xianling Gubao capsule has the potential to be an effective drug for the treatment of OP. Conclusion: Taken together, the m6A modification and contents of osteogenic-related factors were reduced in OP. Upregulated METTL3 improved the osteogenic ability, m6A modification, and osteogenic-related factor abundances in OP-BMSCs. Xianling Gubao capsule rescued the diminished osteogenic capability of OP-BMSCs by modulating METTL3 and might serve as an effective drug for OP. The Xianling Gubao capsule, as a traditional Chinese medicine, could potentially complement existing therapeutic approaches for OP. By targeting the m6A modification pathway and promoting osteogenic differentiation, the capsule may help to expedite bone formation and repair, which are critical for managing OP and reducing the risk of fractures.

2.
BMC Cancer ; 17(1): 422, 2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623900

RESUMO

BACKGROUND: Ovarian cancer is the leading cause of death among gynecologic diseases in Western countries. We have previously identified a miR-200-E-cadherin axis that plays an important role in ovarian inclusion cyst formation and tumor invasion. The purpose of this study was to determine if the miR-200 pathway is involved in the early stages of ovarian cancer pathogenesis by studying the expression levels of the pathway components in a panel of clinical ovarian tissues, and fallopian tube tissues harboring serous tubal intraepithelial carcinomas (STICs), a suggested precursor lesion for high-grade serous tumors. METHODS: RNA prepared from ovarian and fallopian tube epithelial and stromal fibroblasts was subjected to quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) to determine the expression of miR-200 families, target and effector genes and analyzed for clinical association. The effects of exogenous miR-200 on marker expression in normal cells were determined by qRT-PCR and fluorescence imaging after transfection of miR-200 precursors. RESULTS: Ovarian epithelial tumor cells showed concurrent up-regulation of miR-200, down-regulation of the four target genes (ZEB1, ZEB2, TGFß1 and TGFß2), and up-regulation of effector genes that were negatively regulated by the target genes. STIC tumor cells showed a similar trend of expression patterns, although the effects did not reach significance because of small sample sizes. Transfection of synthetic miR-200 precursors into normal ovarian surface epithelial (OSE) and fallopian tube epithelial (FTE) cells confirmed reduced expression of the target genes and elevated levels of the effector genes CDH1, CRB3 and EpCAM in both normal OSE and FTE cells. However, only FTE cells had a specific induction of CA125 after miR-200 precursor transfection. CONCLUSIONS: The activation of the miR-200 pathway may be an early event that renders the OSE and FTE cells more susceptible to oncogenic mutations and histologic differentiation. As high-grade serous ovarian carcinomas (HGSOC) usually express high levels of CA125, the induction of CA125 expression in FTE cells by miR-200 precursor transfection is consistent with the notion that HGSOC has an origin in the distal fallopian tube.


Assuntos
Carcinoma in Situ/genética , Cistadenocarcinoma Seroso/genética , Tubas Uterinas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , Biomarcadores Tumorais , Carcinoma in Situ/patologia , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/patologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Especificidade de Órgãos/genética , Neoplasias Ovarianas/patologia , Interferência de RNA , RNA Mensageiro/genética
3.
Sci Rep ; 14(1): 10340, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710764

RESUMO

This study aims to evaluate the role of trefoil factor 3 (TFF3) peptides in type 2 diabetes mellitus (T2DM) from an inflammatory perspective. The focus was on exploring how TFF3 affects the function of T cells. TFF3 overexpression model was constructed using lentivirus in Jurkat cell lines. We evaluated the impact of TFF3 on the proliferation, apoptosis, and IL-17A levels of Jurkat cells cultured in high glucose. The T2DM model was induced in TFF3 knockout (KO) mice through streptozotocin combined with high-fat diet. The measurements included glucose tolerance, insulin tolerance, inflammation markers, Th17 cell proportion, and pancreatic pathological changes. The T2DM modeling led to splenomegaly in mice, and increased expression of TFF3 in their spleens. Overexpression of TFF3 increased the proportion of IL-17+ T cells and the levels of Th17-related cytokines in Jurkat cells. There was no difference in body weight and blood glucose levels between wild-type and TFF3 KO mice. However, T2DM mice lacking the TFF3 gene showed improved glucose utilization, ameliorated pancreatic pathology, decreased inflammation levels, and reduced Th17 cell ratio. TFF3 may be involved in the chronic inflammatory immune response in T2DM. Its mechanism may be related to the regulation of the RORγt/IL-17 signaling pathway and its impact on T cell proliferation and apoptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos Knockout , Células Th17 , Fator Trefoil-3 , Células Th17/imunologia , Células Th17/metabolismo , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Camundongos , Fator Trefoil-3/metabolismo , Fator Trefoil-3/genética , Células Jurkat , Interleucina-17/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Proliferação de Células , Apoptose , Dieta Hiperlipídica/efeitos adversos
4.
Int Rev Immunol ; : 1-17, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439681

RESUMO

Type 17 T helper (Th17) cells, which are a subtype of CD4+ T helper cells, secrete pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22, and GM-CSF, which play crucial roles in immune defence and protection against fungal and extracellular pathogen invasion. However, dysfunction of Th17 cell immunity mediates inflammatory responses and exacerbates tissue damage. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Therefore, targeting Th17 cells to treat kidney diseases has been a hot topic in recent years. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.


IL-17 and IL-17-producing cells (mainly Th17 cells) are crucial for kidney diseases. Multiple factors and mechanisms are involved in Th17 cell polarization, including oxidative stress, abnormal glucolipid metabolism, miRNA dysfunction, and microbial metabolism. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Modulating the direction of Th17 cell differentiation is a highly attractive therapeutic approach. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.

5.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256932

RESUMO

OBJECTIVE: The therapeutic efficacy and molecular mechanisms of traditional Chinese medicines (TCMs), such as Liuwei Dihuang pills (LWDH pills), in treating osteoporosis (OP) remain an area of active research and interest in modern medicine. This study investigated the mechanistic underpinnings of LWDH pills in the treatment of OP based on network pharmacology, bioinformatics, and in vitro experiments. METHODS: The active ingredients and targets of LWDH pills were retrieved through the TCMSP database. OP-related targets were identified using the CTD, GeneCards, and DisGeNET databases. The STRING platform was employed to construct a protein-protein interaction (PPI) network, and core targets for LWDH pills in treating OP were identified. The GO functional and KEGG pathway enrichment analyses for potential targets were performed using the R package "clusterProfiler". A "drug-target" network diagram was created using Cytoscape 3.7.1 software. The viability of MC3T3-E1 cells was evaluated using the CCK-8 method after treatment with various concentrations (1.25%, 2.5%, 5%, and 10%) of LWDH pill-medicated serum for 24, 48, and 72 h. Following a 48 h treatment of MC3T3-E1 cells with LWDH pill-medicated serum, the protein levels of collagen Ⅰ, RUNX2, Wnt3, and ß-catenin were quantified using the Western blot analysis, and the activity of alkaline phosphatase (ALP) was measured. RESULTS: A total of 197 putative targets for LWDH pills for OP treatment were pinpointed, from which 20 core targets were singled out, including TP53, JUN, TNF, CTNNB1 (ß-catenin), and GSK3B. The putative targets were predominantly involved in signaling pathways such as the Wnt signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. The intervention with LWDH pill-medicated serum for 24, 48, and 72 h did not result in any notable alterations in the cell viability of MC3T3-E1 cells relative to the control group (all p > 0.05). Significant upregulation in protein levels of collagen Ⅰ, RUNX2, Wnt3, and ß-catenin in MC3T3-E1 cells was observed in response to the treatment with 2.5%, 5%, and 10% of LWDH pill-medicated serum in comparison to that with the 10% rabbit serum group (all p < 0.05). Furthermore, the intervention with LWDH pill-medicated serum resulted in the formation of red calcified nodules in MC3T3-E1 cells, as indicated by ARS staining. CONCLUSIONS: LWDH pills may upregulate the Wnt/ß-catenin signaling pathway to elevate the expression of osteogenic differentiation proteins, including collagen Ⅰ and RUNX2, and to increase the ALP activity in MC3T3-E1 cells for the treatment of OP.

6.
BMC Complement Med Ther ; 24(1): 24, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191438

RESUMO

BACKGROUND: There are accumulating type 2 diabetes patients who have osteoporosis simultaneously. More effective therapeutic strategies should be discovered. Biochanin A (BCA) has been indicated that can play a role in improving metabolic disorders of type 2 diabetes and preventing osteoporosis. But whether BCA can treat type 2 diabetic osteoporosis has not been studied. PURPOSE: To investigate if the BCA can protect against type 2 diabetic osteoporosis and clarify the mechanism. METHODS: Micro-CT and histology assays were performed to detect the trabecular bone and analyze the bone histomorphology effect of BCA. CCK-8 assay was performed to detect the toxicity of BCA. TRAcP staining, immunofluorescence and hydroxyapatite resorption assay were used to observe osteoclasts differentiation and resorptive activity. Molecular docking provided evidence about BCA regulating the MAPK axis via prediction by the algorithm. QRT-PCR and Western Blotting were utilized to detect the expression of osteoclastogenesis-related markers and MAPK signaling pathway. RESULTS: Accumulation of bone volume after BCA treatment could be found based on the 3D reconstruction. Besides, there were fewer osteoclasts in db/db mice treated with BCA than db/db mice treated with saline. In vitro, we found that BCA hadn't toxicity in osteoclasts precursor, but also inhibited differentiation of osteoclasts. Further, we found that BCA suppresses osteoclastogenesis via ROS/MAPK signaling pathway. CONCLUSION: BCA can prevent type 2 diabetic osteoporosis by restricting osteoclast differentiation via ROS/MAPK signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Osteogênese , Animais , Camundongos , Humanos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transdução de Sinais
7.
World J Clin Cases ; 11(28): 6733-6743, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37901035

RESUMO

BACKGROUND: Subchondral fatigue fracture of the femoral head (SFFFH) mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head. However, less research focuses on the risk factor for SFFFH. AIM: To evaluate the intrinsic risk factors for SFFFH in young military recruits. METHODS: X-ray and magnetic resonance imaging data were used for analysis. Acetabular anteversion of the superior acetabulum, acetabular anteversion of the center of the acetabulum (AVcen), anterior acetabular sector angle (AASA), posterior acetabular sector angle, superior acetabular sector angle, neck-shaft angle (NSA), inferior iliac angle (IIA), and ischiopubic angle were calculated. Then, logistic regression, receiver operating characteristic curve analysis, and independent samples t-test were performed to identify the risk factors for SFFFH. RESULTS: Based on the results of logistic regression, age [odds ratio (OR): 1.33; 95% confidence interval (95%CI): 1.12-1.65; P = 0.0031] and treatment timing (OR: 0.86; 95%CI: 0.75-0.96; P = 0.015) could be considered as the indicators for SFFFH. AVcen (P = 0.0334), AASA (P = 0.0002), NSA (P = 0.0007), and IIA (P = 0.0316) were considered to have statistical significance. Further, AVcen (OR: 1.41; 95%CI: 1.04-1.95) and AASA (OR: 1.44; 95%CI: 1.21-1.77), especially AASA (area under curve: 66.6%), should be paid much more attention due to the higher OR than other indicators. CONCLUSION: We have for the first time unveiled that AASA and age could be key risk factors for SFFFH, which further verifies that deficient anterior coverage of the acetabulum might be the main cause of SFFFH.

8.
Int Immunopharmacol ; 120: 110317, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207447

RESUMO

Membranous nephropathy (MN) is one of the most common causes of non-diabetic nephrotic syndrome in adults. About 80% of cases are renal limited (primary MN) and 20% are associated with other systemic diseases or exposures (secondary MN). Autoimmune reaction is the main pathogenic factor of MN, and the discovery of autoantigens including the phospholipase A2 receptor and thrombospondin type-1 domain-containing protein 7A has led to new insights into the pathogenesis, they can induce humoral immune responses led by IgG4 makes them suitable for the diagnosis and monitoring of MN. In addition, complement activation, genetic susceptibility genes and environmental pollution are also involved in MN immune response. In clinical practice, due to the spontaneous remission of MN, the combination of supportive therapy and pharmacological treatment is widely used. Immunosuppressive drugs are the cornerstone of MN treatment, and the dangers and benefits of this approach vary from person to person. In summary, this review provides a more comprehensive review of the immune pathogenesis, interventions and unresolved issues of MN in the hope of providing some new ideas for clinical and scientific researchers in the treatment of MN.


Assuntos
Glomerulonefrite Membranosa , Síndrome Nefrótica , Adulto , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Trombospondinas/metabolismo , Receptores da Fosfolipase A2/metabolismo , Rim/patologia , Síndrome Nefrótica/complicações , Autoanticorpos
9.
Ageing Res Rev ; 85: 101861, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693450

RESUMO

Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.


Assuntos
Nefropatias , Qualidade de Vida , Humanos , Nefropatias/etiologia , Rim/patologia , Envelhecimento , Lipídeos , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Fibrose
10.
Curr Mol Pharmacol ; 16(7): 751-758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200156

RESUMO

BACKGROUNDS: Hypertensive nephropathy (HN) is a kind of renal disease caused by essential hypertension that eventually worsens into end-stage renal disease (ESRD). HN could damage the renal tubules, induce kidney damage and renal failure, and increase the risk of stroke, heart disease or death, but there are few ideal drugs for HN treatment. METHODS: In this study, we explored the therapeutic effect of bajijiasu (a compound from Morinda officinalis how and a common traditional Chinese medicine for tonifying the kidney) on the HN rat model. Biochemical analysis, HE staining, and PAS staining were used to assess the effects of bajijiasu on HN rat model. Western blotting was used to analyze the potential mechanisms. RESULTS: The results of HE staining and PAS staining showed that bajijiasu could alleviate the pathological changes in HN rat models; biochemical analysis found that the concentration of Malondialdehyde (MDA), total protein (TP), albumin (ALB), microalbuminuria (MALB), blood urea nitrogen (BUN), creatinine (Cr), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased compared with the model group after bajijiasu treatment; and bajijiasu could regulate the expression of TNF-α, IL-6, MDA, SOD1 and AGEs in HN rats; the result of western blotting demonstrated that bajijiasu could down-regulate the expression of TGFß1, NOX4, JNK, p- JNK and up-regulate the expression PPARγ and SOD 1 in HN rats. CONCLUSION: Those results demonstrated that bajijiasu could alleviate the pathological changes and physiological and biochemical symptoms of HN rat models by regulating the expression of TGFß1, PPARγ, JNK, p-JNK, NOX4 and SOD1 but could not lower the blood pressure of HN rats. Those pieces of evidence may provide a new therapeutic method for HN treatment.


Assuntos
Hipertensão Renal , PPAR gama , Ratos , Animais , Superóxido Dismutase-1 , Rim/patologia , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/patologia
11.
Life Sci ; 322: 121326, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639053

RESUMO

AIMS: Eucommia is the tree bark of Eucommia japonica, family Eucommiaceae. In traditional Chinese medicine, Eucommia is often used to treat osteoporosis. Quercetin (QUE), a major flavonoid extract of Eucommia japonica, has been reported to have anti-osteoporosis effects. However, there are no studies reporting the mechanism of QUE in the treatment of iron overload-induced osteoporosis. This study set out to investigate the therapeutic effects of QUE against iron overload-induced bone loss and its potential molecular mechanisms. MATERIALS AND METHODS: In vitro, MC3T3-E1 cells were used to study the effects of QUE on osteogenic differentiation, anti-apoptosis and anti-oxidative stress damage in an iron overload environment (FAC 200 µM). In vivo, we constructed an iron overload mouse model by injecting iron dextrose intraperitoneally and assessed the osteoprotective effects of QUE by Micro-CT and histological analysis. KEY FINDINGS: In vitro, we found that QUE increased the ALP activity of MC3T3-E1 cells in iron overload environment, promoted the formation of bone mineralized nodules and upregulated the expression of Runx2 and Osterix. In addition, QUE was able to reduce FAC-induced apoptosis and ROS production, down-regulated the expression of Caspase3 and Bax, and up-regulated the expression of Bcl-2. In further studies, we found that QUE activated the Nrf2/HO-1 signaling pathway and attenuated FAC-induced oxidative stress damage. The results of the in vivo study showed that QUE was able to reduce iron deposition induced by iron dextrose and attenuate bone loss. SIGNIFICANCE: Our results suggested that QUE protects against iron overload-induced osteoporosis by activating the Nrf2/HO-1 signaling pathway.


Assuntos
Sobrecarga de Ferro , Osteoporose , Animais , Camundongos , Glucose/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Heme Oxigenase-1/metabolismo
12.
Biomed Pharmacother ; 157: 113915, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379122

RESUMO

BACKGROUND: Iron homeostasis plays a positive role in articular cartilage health. Excessive iron or iron overload can induce oxidative stress damage in chondrocytes and ferroptosis cell death, advancing knee osteoarthritis (KOA). However, up to date, few effective agents treat iron overload-induced KOA (IOKOA). Chinese herbal medicine (CHM) provides abundant resources for drug selection to manage bone metabolic conditions, including osteoporosis. Biochanin A (BCA) is a novel bioactive multifunctional natural compound isolated from Huangqi, which has protective effects on bone loss. Nevertheless, the function and mechanism of BCA in treating IOKOA are still elusive. PURPOSE: This study seeks to uncover the potential therapeutic targets and mechanisms of BCA in the management of KOA with iron accumulation. METHODS: Iron dextrin (500 mg/kg) was intraperitoneally injected into mice to establish the iron overloaded mice model. OA was induced through surgery, and the progression was evaluated eight weeks following surgery. OA severity was evaluated with micro-CT and Safranin-O/Fast green staining in vivo. Iron deposition in the knee joint and synovium was assessed using Perl's Prussian blue staining. Ferric ammonium citrate (FAC) was then administered to primary chondrocytes to evaluate iron regulators mediated iron homeostasis. Toluidine blue staining was utilized to identify chondrocytes in vitro. The vitality of the cells was assessed using the CCK-8 test. The apoptosis rate of cells was measured using Annexin V-FITC/PI assay. The intracellular iron level was detected utilizing the calcein-AM test. Reactive oxygen species (ROS), lipid-ROS, and mitochondrial membrane potentiality were reflected via fluorescence density. Utilizing RT-qPCR and western blotting, the expression level was determined. RESULTS: Micro-CT and histological staining of knee joints showed greater cartilage degradation and higher iron buildup detected in iron-overloaded mice. BCA can reduce iron deposition and the severity of KOA. Toluidine blue staining and the CCK-8 assay indicated that BCA could rescue chondrocytes killed by iron. Cell apoptosis rates were increased due to iron overload but improved by BCA. Further, the intracellular content of iron, ROS, and lipid-ROS was increased with ferric ammonium citrate (FAC) treatment but restored after treatment with different concentrations of BCA. JC-1 staining revealed that BCA could reduce mitochondrial damage induced by iron overload. CONCLUSION: Iron overload was shown to promote chondrocyte ferroptosis in vivo and in vitro. Moreover, iron overload suppressed the expression of collagen II and induced MMP expression by catalyzing ROS generation with mitochondrial dysfunction. Our results showed that BCA could directly reduce intracellular iron concentration by inhibiting TfR1 and promoting FPN but also target the Nrf2/system xc-/GPX4 signaling pathway to scavenge free radicals and prevent lipid peroxidation. The results of this research indicate that BCA regulates iron homeostasis during the progression of osteoarthritis, which can open a new field of treatment for KOA.


Assuntos
Sobrecarga de Ferro , Osteoartrite do Joelho , Animais , Camundongos , Condrócitos/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Lipídeos/farmacologia , Osteoartrite do Joelho/patologia , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia
13.
Curr Pharm Biotechnol ; 24(13): 1708-1714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959153

RESUMO

BACKGROUND: Hypertensive nephropathy (HN) is one kind of kidney disorders caused by long-term uncontrolled hypertension, usually resulting in severe kidney damage, including inflammation and oxidative stress, no matter in cells or tissues, from patients with nephropathy. In recent years, nephropathy accompanied by hypertension is becoming one of the main causes for kidney replacement therapy, but few effective treatments have been reported for HN treatment. Asystasia chelonoides (AC) is a kind of plant with the effects of anti-inflammation, lowering blood pressure, and anti-oxidative stress. Still, the therapeutic effect of AC in HN rats is not clear. METHODS: To establish HN model by feeding high sugar and high fat diet spontaneously hypertensive rats. Blood measurement, HE staining, PAS staining and biochemical analysis and were used to assess the therapeutic effects of AC extracts and western blotting analyzed the underlying mechanisms of AC extracts treatment in the HN rat model. RESULTS: AC extracts could significantly lower systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) in HN rats; and reduce the expression of total protein (TP), blood urea nitrogen (BUN), microalbuminuria (MALB), creatinine (Cr), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) concentrations, and also could down-regulate expression of IL-6, MDA and AGEs, up-regulate the expression of SOD in HN rats; HE staining and PAS staining demonstrated that AC extracts could alleviate the histopathological changes in HN rats; western blotting demonstrated that AC extracts could up-regulate the expression of PPARγ and down-regulate the expression of TGFß1 and NF-кB in HN rats. CONCLUSION: The finding of the article demonstrated that AC extracts had the better therapeutic effect for HN, and provided the pharmacological evidences for AC extracts treatment for HN.


Assuntos
Hipertensão Renal , Hipertensão , Ratos , Animais , Hipertensão Renal/complicações , Hipertensão Renal/patologia , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Colesterol , Rim , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
14.
Front Nutr ; 10: 1234756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575330

RESUMO

Background: Resveratrol is a natural polyphenol compound that is widely present in herbal medicines such as Reynoutria japonica Houtt., Veratrum nigrum L., and Catsiatora Linn and is used in traditional Chinese medicine to treat metabolic bone deseases. Animal experiments have shown that resveratrol may have a strong treatment effect against osteoporosis (OP). The purpose of this study was to explore the efficacy of resveratrol in treating OP animal models based on preclinical research data. Methods: This study was completed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases from inception to May 8, 2023, to identify animal experiments on the treatment of OP with resveratrol. The effect sizes of bone mineral density (BMD), parameters of micro-CT, serum calcium, phosphorus, alkaline phosphatase (ALP) and osteocalcin were expressed as the mean differences (MDs) and 95% confidence intervals (CIs). RevMan 5.4 software was used for data analysis. Results: This meta-analysis included a total of 15 animal experiments, including 438 OP rats. The meta-analysis results showed that compared with the control group, resveratrol (<10, 10-25, 40-50, ≥ 60 mg/kg/day) significantly increased femoral and lumbar bone mineral density (BMD) in OP rats (p < 0.05). Resveratrol (<10 mg/kg/day) significantly increased the BMD of the total body (MD = 0.01, 95% CI: 0.01 to 0.01, p < 0.001). In terms of improving the parameters related to micro-CT, resveratrol (40-50 mg/kg/day) can increase trabecular thickness and trabecular number and reduce trabecular spacing (p < 0.05). Compared with the control group, resveratrol can reduce the concentration of calcium and phosphorus in serum but has no significant effect on serum ALP and osteocalcin (p > 0.05). The results of subgroup analysis showed that resveratrol increased the whole-body BMD of SD rats (p = 0.002) but did not improve the whole-body BMD of 3-month-old rats (p = 0.17). Conclusion: Resveratrol can increase BMD in OP rat models, and its mechanism of action may be related to improving bone microstructure and regulating calcium and phosphorus metabolism. The clinical efficacy of resveratrol in the treatment of OP deserves further research.

15.
Transl Vis Sci Technol ; 12(9): 5, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672251

RESUMO

Purpose: To evaluate the pharmacology and toxicology of SAF312, a transient receptor potential vanilloid 1 (TRPV1) antagonist. Methods: TRPV1 expression in human ocular tissues was evaluated with immunohistochemistry. Inhibition of calcium influx in Chinese hamster ovary (CHO) cells expressing human TRPV1 (hTRPV1) and selectivity of SAF312 were assessed by a fluorescent imaging plate reader assay. Ocular tissue and plasma pharmacokinetics (PK) were assessed following a single topical ocular dose of SAF312 (0.5%, 1.0%, 1.5%, 2.5%) in rabbits. Safety and tolerability of SAF312 were evaluated in rabbits and dogs. Effects of SAF312 on corneal wound healing after photorefractive keratectomy (PRK) surgery were assessed in rabbits. Results: TRPV1 expression was noted in human cornea and conjunctiva. SAF312 inhibited calcium influx in CHO-hTRPV1 cells induced by pH 5.5 (2-[N-morpholino] ethanesulfonic acid), N-arachidonoylethanolamine, capsaicin, and N-arachidonoyl dopamine, with IC50 values of 5, 10, 12, and 27 nM, respectively, and inhibition appeared noncompetitive. SAF312 demonstrated high selectivity for TRPV1 (>149-fold) over other TRP channels. PK analysis showed highest concentrations of SAF312 in cornea and conjunctiva. SAF312 was found to be safe and well tolerated in rabbits and dogs up to the highest feasible concentration of 2.5%. No delay in wound healing after PRK was observed. Conclusions: SAF312 is a potent, selective, and noncompetitive antagonist of hTRPV1 with an acceptable preclinical safety profile for use in future clinical trials. Translational Relevance: SAF312, which was safe and well tolerated without causing delay in wound healing after PRK in rabbits, may be a potential therapeutic agent for ocular surface pain.


Assuntos
Cálcio , Túnica Conjuntiva , Canais de Cátion TRPV , Animais , Cricetinae , Cães , Humanos , Coelhos , Células CHO , Cricetulus , Canais de Cátion TRPV/antagonistas & inibidores
16.
Chem Biol Interact ; 369: 110289, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455676

RESUMO

Fibrosis refers to the excessive deposition of extracellular matrix components in the processes of wound repair or tissue regeneration after tissue damage. Fibrosis occurs in various organs such as lung, heart, liver, and kidney tissues, resulting in the failure of organ structural integrity and its functional impairment. It has long been thought to be relentlessly progressive and irreversible process, but both preclinical models and clinical trials in multiorgans have shown that fibrosis is a highly dynamic process. Transforming growth factor-beta (TGF-ß) is a superfamily of related growth factors. Many studies have described that activation of profibrotic TGF-ß signaling promotes infiltration and/or proliferation of preexisting fibroblasts, generation of myofibroblasts, extracellular matrix deposition, and inhibition of collagenolysis, which leads to fibrosis in the pathological milieu. This review describes the effect of TGF-ß signaling in fibrotic-associate lung, heart, liver, and kidney tissues, followed by a detailed discussion of canonical and non-canonical TGF-ß signaling pathway. In addition, this review also discusses therapeutic options by using natural products and chemical agents, for targeting tissue fibrosis via modulating TGF-ß signaling to provide a more specific concept-driven therapy strategy for multiorgan fibrosis.


Assuntos
Coração , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Transdução de Sinais , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
17.
Life Sci ; 312: 121092, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279968

RESUMO

BACKGROUND: Metformin (MET) is widely used as a first-line hypoglycemic agent for the treatment of type 2 diabetes mellitus (T2DM) and was also confirmed to have a therapeutic effect on type 2 diabetic osteoporosis (T2DOP). However, the potential mechanisms of MET in the treatment of T2DOP are unclear. OBJECTIVE: To clarify the effect of MET in T2DOP and to explore the potential mechanism of MET in the treatment of T2DOP. METHODS: In vitro, we used MC3T3-E1 cells to study the effects of MET on osteogenic differentiation and anti-oxidative stress injury in a high glucose (Glucose 25 mM) environment. In vivo, we directly used db/db mice as a T2DOP model and assessed the osteoprotective effects of MET by Micro CT and histological analysis. RESULTS: In vitro, we found that MET increased ALP activity in MC3T3-E1 cells in a high-glucose environment, promoted the formation of bone mineralized nodules, and upregulated the expression of the osteogenesis-related transcription factors RUNX2, Osterix, and COL1A1-related genes. In addition, MET was able to reduce high glucose-induced reactive oxygen species (ROS) production. In studies on the underlying mechanisms, we found that MET activated the Nrf2/HO-1 signaling pathway and alleviated high-glucose-induced oxidative stress injury. In vivo results showed that MET reduced bone loss and bone microarchitecture destruction in db/db mice. CONCLUSION: Our results suggest that MET can activate the Nrf2/HO-1 signaling pathway to regulate the inhibition of osteogenic differentiation induced by high glucose thereby protecting T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Osteoporose , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/metabolismo , Estresse Oxidativo , Transdução de Sinais
18.
Heliyon ; 9(3): e14171, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938470

RESUMO

Aim: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Although etiology for DN is complex and still needs to be fully understood, lipid metabolism disorder is found to play a role in it. Previously, we found Yishen Huashi (YSHS) granule could inhibit diabetic damage and reduce level of microalbuminuria (mALB) in DN animals. To explore its role and mechanism in lipid metabolism under DN settings, this study was designed. Materials and methods: DN rats were induced by streptozotocin (STZ), HepG2 and CaCO2 cells were applied for in vitro study. Hematoxylin-Eosin (HE), periodic acid-Schiff (PAS) staining, and Transmission Electron Microscopy (TEM) were applied for histological observation; 16s Sequencing was used for intestinal microbiota composition analysis; western blotting (WB) and immunofluorescence were carried out for molecular biological study, and enzyme-linked immunosorbent assay (ELISA) was used for lipid determination. Results: YSHS administration significantly reduced levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C), while increased level of high-density lipoprotein (HDL-C); meanwhile, histological changes and steatosis of the liver was ameliorated, integrity of the intestinal barrier was enhanced, and dysbacteriosis within intestinal lumen was ameliorated. Mechanism study found that YSHS modulated mitophagy within hepatocytes and inhibited mTOR/AMPK/PI3K/AKT signaling pathway. Conclusion: In conclusion, we found in the present study that YSHS administration could ameliorate lipid metabolism disorder in DN animals, and its modulation on intestinal-liver axis played a significant role in it.

19.
Phytomedicine ; 114: 154763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001295

RESUMO

BACKGROUND: Membranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PURPOSE: We assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. METHODS: We determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/ß-catenin/renin-angiotensin system (RAS) signalling axis. RESULTS: MSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and ß-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and ß-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, ß-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and ß-catenin siRNA. CONCLUSION: This study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/ß-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new ß-catenin inhibitor that inhibits the Wnt1/ß-catenin pathway to retard MN in patients.


Assuntos
Glomerulonefrite Membranosa , Sistema Renina-Angiotensina , Ratos , Animais , beta Catenina/metabolismo , Proteinúria , Via de Sinalização Wnt
20.
Biomed Pharmacother ; 168: 115751, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879214

RESUMO

Knee Osteoarthritis (KOA) is an age-related progressive degenerative joint disease, which is featured with pain, joint deformity, and disability. Accumulating evidence indicated oxidative stress plays a crucial role in the occurrence and development of KOA. Curcumin is a polyphenolic compound with significant antioxidant activity among various diseases while catalase (CAT) is an enzyme degrading hydrogen peroxide in treating oxidative diseases. We previously showed that the expression of CAT was low in cartilage. However, the combination of curcumin and CAT in KOA is still elusive. In this study, we demonstrated that the combination of curcumin and CAT has the potential to inhibit the IL1ß-induced chondrocyte apoptosis without cytotoxicity in vitro. Mechanistically, we found that the synergistic application curcumin and CAT not only promotes curcumin's regulation of the NRF2/HO-1 signaling pathway to enhance antioxidant enzyme expression to remove superoxide radicals, but also CAT can further remove downstream hydrogen peroxide which enhances the ability to scavenge reactive oxygen species (ROS). In vivo, studies revealed that combination of curcumin and catalase could better inhibit oxidative stress-induced chondrocyte injury by promoting the expression of ROS scavenging enzymes. In sum, the combination of curcumin and catalase can be used to treat KOA. Thus, combination of curcumin and catalase may act as a novel therapeutic agent to manage KOA and our research gives a rationale for their combined use in the therapeutic of KOA.


Assuntos
Curcumina , Osteoartrite do Joelho , Humanos , Espécies Reativas de Oxigênio/metabolismo , Curcumina/uso terapêutico , Catalase/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Peróxido de Hidrogênio/farmacologia , Condrócitos/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA