Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(35): e2408183121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172778

RESUMO

The conversion of CO2 into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO2 and water into methanol and oxygen. The catalytic material consists of semiconducting nanowires decorated with core-shell nanoparticles, with a copper-rhodium core and a chromium oxide shell. The Rh/CrOOH interface provides a unidirectional channel for proton reduction, enabling hydrogen spillover at the core-shell interface. The vectorial transfer of protons, electrons, and hydrogen atoms allows for switching the mechanism of CO2 reduction from a proton-coupled electron transfer pathway in aqueous solution to hydrogenation of CO2 with a solar-to-methanol efficiency of 0.22%. The reported findings demonstrate a highly efficient, stable, and scalable wireless system for synthesis of methanol from CO2 that could provide a viable path toward carbon neutrality and environmental sustainability.

2.
Proc Natl Acad Sci U S A ; 120(1): e2206850120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577066

RESUMO

Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts.


Assuntos
Monóxido de Carbono , Hidrogênio , Monóxido de Carbono/química , Oxirredução , Catálise , Hidrogênio/química , Platina/química
3.
J Biol Chem ; 300(7): 107475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879008

RESUMO

Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a Mn4CaO5 cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the Mn4CaO5 cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.


Assuntos
Domínio Catalítico , Complexo de Proteína do Fotossistema II , Água , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Água/metabolismo , Água/química , Oxirredução , Mutação , Microscopia Crioeletrônica , Manganês/metabolismo , Manganês/química
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937700

RESUMO

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.


Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Proteína do Fotossistema II/ultraestrutura , Synechocystis/química , Proteínas de Bactérias/metabolismo , Conformação Proteica
5.
J Am Chem Soc ; 146(23): 15986-15999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38833517

RESUMO

Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to YZ•, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle. We propose a water binding mechanism in which WI is thermodynamically favored by the closed-cubane form of the OEC, with water delivery mediated by Ca2+ ligand exchange. Isomerization from the closed- to open-cubane conformation at three post-WI states highlights the importance of the location of the MnIII center in the OEC and the orientation of its Jahn-Teller axis to conformational changes of the OEC, which might be critical for the formation of the O-O bond. These findings reveal a complex interplay between conformational changes in the OEC and the ligand environment during the activation of the OEC by YZ•. Analogous regulatory effects due to water ligand binding are expected to be important for a wide range of catalysts activated by redox state transitions in aqueous environments.


Assuntos
Oxirredução , Oxigênio , Complexo de Proteína do Fotossistema II , Água , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Água/química , Ligantes , Oxigênio/química , Oxigênio/metabolismo , Simulação de Dinâmica Molecular , Termodinâmica , Teoria Quântica
6.
J Am Chem Soc ; 145(5): 3238-3247, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706437

RESUMO

A well-known catalyst, fac-Re(4,4'-R2-bpy)(CO)3Cl (bpy = bipyridine; R = COOH) (ReC0A), has been widely studied for CO2 reduction; however, its photocatalytic performance is limited due to its narrow absorption range. Quantum dots (QDs) are efficient light harvesters that offer several advantages, including size tunability and broad absorption in the solar spectrum. Therefore, photoinduced CO2 reduction over a broad range of the solar spectrum could be enabled by ReC0A catalysts heterogenized on QDs. Here, we investigate interfacial electron transfer from Cd3P2 QDs to ReC0A complexes covalently bound on the QD surface, induced by photoexcitation of the QD. We explore the effect of triethylamine, a sacrificial hole scavenger incorporated to replenish the QD with electrons. Through combined transient absorption spectroscopic and computational studies, we demonstrate that electron transfer from Cd3P2 to ReC0A can be enhanced by a factor of ∼4 upon addition of triethylamine. We hypothesize that the rate enhancement is a result of triethylamine possibly altering the energetics of the Cd3P2-ReC0A system by interacting with the quantum dot surface, deprotonation of the quantum dot, and preferential solvation, resulting in a shift of the conduction band edge to more negative potentials. We also observe the rate enhancement in other QD-electron acceptor systems. Our findings provide mechanistic insights into hole scavenger-quantum dot interactions and how they may influence photoinduced interfacial electron transfer processes.

7.
Photosynth Res ; 152(2): 167-175, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322325

RESUMO

The oxygen-evolving complex (OEC) of photosystem II (PSII) cycles through redox intermediate states Si (i = 0-4) during the photochemical oxidation of water. The S2 state involves an equilibrium of two isomers including the low-spin S2 (LS-S2) state with its characteristic electron paramagnetic resonance (EPR) multiline signal centered at g = 2.0, and a high-spin S2 (HS-S2) state with its g = 4.1 EPR signal. The relative intensities of the two EPR signals change under experimental conditions that shift the HS-S2/LS-S2 state equilibrium. Here, we analyze the effect of glycerol on the relative stability of the LS-S2 and HS-S2 states when bound at the narrow channel of PSII, as reported in an X-ray crystal structure of cyanobacterial PSII. Our quantum mechanics/molecular mechanics (QM/MM) hybrid models of cyanobacterial PSII show that the glycerol molecule perturbs the hydrogen-bond network in the narrow channel, increasing the pKa of D1-Asp61 and stabilizing the LS-S2 state relative to the HS-S2 state. The reported results are consistent with the absence of the HS-S2 state EPR signal in native cyanobacterial PSII EPR spectra and suggest that the narrow water channel hydrogen-bond network regulates the relative stability of OEC catalytic intermediates during water oxidation.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Espectroscopia de Ressonância de Spin Eletrônica , Glicerol , Hidrogênio , Oxirredução , Oxigênio , Água
8.
J Am Chem Soc ; 143(22): 8324-8332, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029102

RESUMO

We address the protonation state of the water-derived ligands in the oxygen-evolving complex (OEC) of photosystem II (PSII), prepared in the S2 state of the Kok cycle. We perform quantum mechanics/molecular mechanics calculations of isotropic proton hyperfine coupling constants, with direct comparisons to experimental data from two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy and extended X-ray absorption fine structure (EXAFS). We find a low-barrier hydrogen bond with significant delocalization of the proton shared by the water-derived ligand, W1, and the aspartic acid residue D1-D61 of the D1 polypeptide. The lowering of the zero-point energy of a shared proton due to quantum delocalization precludes its release to the lumen during the S1→ S2 transition. Retention of the proton facilitates the shuttling of a proton during the isomerization of the tetranuclear manganese-calcium-oxo (Mn4Ca-oxo) cluster, from the "open" to "closed" conformation, a step suggested to be necessary for oxygen evolution from previous studies. Our findings suggest that quantum-delocalized protons, stabilized by low-barrier hydrogen bonds in model catalytic systems, can facilitate the accumulation of multiple oxidizing equivalents at low overpotentials.

9.
J Org Chem ; 86(23): 17011-17035, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34784213

RESUMO

We detail the development of the first enantioselective synthetic route to euonyminol (1), the most heavily oxidized member of the dihydro-ß-agarofuran sesquiterpenes and the nucleus of the macrocyclic alkaloids known as the cathedulins. Key steps in the synthetic sequence include a novel, formal oxyalkylation reaction of an allylic alcohol by [3 + 2] cycloaddition; a tandem lactonization-epoxide opening reaction to form the trans-C2-C3 vicinal diol residue; and a late-stage diastereoselective trimethylaluminum-mediated α-ketol rearrangement. We report an improved synthesis of the advanced unsaturated ketone intermediate 64 by means of a 6-endo-dig radical cyclization of the enyne 42. This strategy nearly doubled the yield through the intermediate steps in the synthesis and avoided a problematic inversion of stereochemistry required in the first-generation approach. Computational studies suggest that the mechanism of this transformation proceeds via a direct 6-endo-trig cyclization, although a competing 5-exo-trig cyclization, followed by a rearrangement, is also energetically viable. We also detail the challenges associated with manipulating the oxidation state of late-stage intermediates, which may inform efforts to access other derivatives such as 9-epi-euonyminol or 8-epi-euonyminol. Our successful synthetic strategy provides a foundation to synthesize the more complex cathedulins.


Assuntos
Alcaloides , Ciclização , Reação de Cicloadição , Oxirredução , Estereoisomerismo
10.
Proc Natl Acad Sci U S A ; 115(12): 2902-2907, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507243

RESUMO

Atomically dispersed catalysts refer to substrate-supported heterogeneous catalysts featuring one or a few active metal atoms that are separated from one another. They represent an important class of materials ranging from single-atom catalysts (SACs) and nanoparticles (NPs). While SACs and NPs have been extensively reported, catalysts featuring a few atoms with well-defined structures are poorly studied. The difficulty in synthesizing such structures has been a critical challenge. Here we report a facile photochemical method that produces catalytic centers consisting of two Ir metal cations, bridged by O and stably bound to a support. Direct evidence unambiguously supporting the dinuclear nature of the catalysts anchored on α-Fe2O3 is obtained by aberration-corrected scanning transmission electron microscopy (AC-STEM). Experimental and computational results further reveal that the threefold hollow binding sites on the OH-terminated surface of α-Fe2O3 anchor the catalysts to provide outstanding stability against detachment or aggregation. The resulting catalysts exhibit high activities toward H2O photooxidation.

11.
J Am Chem Soc ; 142(40): 17119-17130, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32935987

RESUMO

Effective methane utilization for either clean power generation or value-added chemical production has been a subject of growing attention worldwide for decades, yet challenges persist mostly in relation to methane activation under mild conditions. Here, we report hematite, an earth-abundant material, to be highly effective and thermally stable to catalyze methane combustion at low temperatures (<500 °C) with a low light-off temperature of 230 °C and 100% selectivity to CO2. The reported performance is impressive and comparable to those of precious-metal-based catalysts, with a low apparent activation energy of 17.60 kcal·mol-1. Our theoretical analysis shows that the excellent performance stems from a tetra-iron center with an antiferromagnetically coupled iron dimer on the hematite (110) surface, analogous to that of the methanotroph enzyme methane monooxygenase that activates methane at ambient conditions in nature. Isotopic oxygen tracer experiments support a Mars van Krevelen redox mechanism where CH4 is activated by reaction with a hematite surface oxygen first, followed by a catalytic cycle through a molecular-dioxygen-assisted pathway. Surface studies with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal the evolution of reaction intermediates from a methoxy CH3-O-Fe, to a bridging bidentate formate b-HCOO-Fe, to a monodentate formate m-HCOO-Fe, before CO2 is eventually formed via a combination of thermal hydrogen-atom transfer (HAT) and proton-coupled electron transfer (PCET) processes. The elucidation of the reaction mechanism and the intermediate evolutionary profile may allow future development of catalytic syntheses of oxygenated products from CH4 in gas-phase heterogeneous catalysis.

12.
Proc Natl Acad Sci U S A ; 114(14): 3578-3583, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320950

RESUMO

Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

13.
Phys Chem Chem Phys ; 21(37): 20840-20848, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517382

RESUMO

The room temperature pump-probe X-ray free electron laser (XFEL) measurements used for serial femtosecond crystallography provide remarkable information about the structures of the catalytic (S-state) intermediates of the oxygen-evolution reaction of photosystem II. However, mixed populations of these intermediates and moderate resolution limit the interpretation of the data from current experiments. The S3 XFEL structures show extra density near the OEC that may correspond to a water/hydroxide molecule. However, in the latest structure, this additional oxygen is 2.08 Šfrom the Oε2 of D1-E189, which is closer than the sum of the van der Waals radii of the two oxygens. Here, we use Boltzmann statistics and Monte Carlo sampling to provide a model for the S2-to-S3 state transition, allowing structural changes and the insertion of an additional water/hydroxide. Based on our model, water/hydroxide addition to the oxygen-evolving complex (OEC) is not thermodynamically favorable in the S2g = 2 state, but it is in the S2g = 4.1 redox isomer. Thus, formation of the S3 state starts by a transition from the S2g = 2 to the S2g = 4.1 structure. Then, electrostatic interactions support protonation of D1-H190 and deprotonation of the Ca2+-ligated water (W3) with proton loss to the lumen. The W3 hydroxide moves toward Mn4, completing the coordination shell of Mn4 and favoring its oxidation to Mn(iv) in the S3 state. In addition, binding an additional hydroxide to Mn1 leads to a conformational change of D1-E189 in the S2g = 4.1 and S3 structures. In the S3 state a fraction of D1-E189 release from Mn1 and bind a proton.


Assuntos
Modelos Químicos , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Termodinâmica
14.
J Am Chem Soc ; 140(5): 1824-1833, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29298055

RESUMO

A new class of hydrophobic CuO nanosheets is introduced by functionalization of the cupric oxide surface with p-xylene, toluene, hexane, methylcyclohexane, and chlorobenzene. The resulting nanosheets exhibit a wide range of contact angles from 146° (p-xylene) to 27° (chlorobenzene) due to significant changes in surface composition induced by functionalization, as revealed by XPS and ATR-FTIR spectroscopies and computational modeling. Aromatic adsorbates are stable even up to 250-350 °C since they covalently bind to the surface as alkoxides, upon reaction with the surface as shown by DFT calculations and FTIR and 1H NMR spectroscopy. The resulting hydrophobicity correlates with H2 temperature-programmed reduction (H2-TPR) stability, which therefore provides a practical gauge of hydrophobicity.

15.
J Chem Phys ; 147(3): 034301, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734300

RESUMO

We present global ground-state potential energy surfaces for the quintet and singlet spin states of the O4 system that are suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic, spin-conserving O2-O2 collisions. The surfaces are based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation. The active space has 16 electrons in 12 orbitals. The calculations cover nine kinds of geometrical arrangements corresponding to dissociative diatom-diatom collisions of O2, geometries corresponding to O3-O, geometries identified by running trajectories, and geometries along linear synchronous transit paths. The global ground-state potential energy surfaces were obtained by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction to 12 684 electronic structure data points for the singlet and 10 543 electronic structure data points for the quintet. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions.

16.
Angew Chem Int Ed Engl ; 56(25): 7213-7217, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28523904

RESUMO

A copper/borinic acid dual catalytic reaction enabled the enantioselective propargylation of aliphatic polyols. Readily available reagents and catalysts were used in this transformation, which displayed good to excellent chemo- and stereoselectivity for a broad array of substrates. The method was also applicable to the desymmetrization of meso 1,2-diols to furnish products with three stereogenic centers and a terminal alkyne group in one operation.

17.
Angew Chem Int Ed Engl ; 56(31): 9111-9115, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28628943

RESUMO

Main-group complexes are shown to be viable electrocatalysts for the H2 -evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton-reduction catalytic properties of TPSb(OH)2 (TP=5,10,15,20-tetra(p-tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox-active ligands during catalysis.

18.
J Am Chem Soc ; 138(17): 5511-4, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27087202

RESUMO

The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-µ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

19.
Angew Chem Int Ed Engl ; 55(47): 14818-14822, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27779359

RESUMO

Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur-cathode materials in lithium-sulfur (Li-S) batteries. To develop long-cycle Li-S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well-defined surface sites; thereby improving cycling stability and allowing study of molecular-level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide-confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation-π interactions between Li+ of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene.

20.
J Am Chem Soc ; 137(4): 1520-9, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25563343

RESUMO

The behavior of crystalline nanoparticles depends strongly on which facets are exposed. Some facets are more active than others, but it is difficult to selectively isolate particular facets. This study provides fundamental insights into photocatalytic and photoelectrochemical performance of three types of TiO(2) nanoparticles with predominantly exposed {101}, {010}, or {001} facets, where 86-99% of the surface area is the desired facet. Photodegradation of methyl orange reveals that {001}-TiO(2) has 1.79 and 3.22 times higher photocatalytic activity than {010} and {101}-TiO(2), respectively. This suggests that the photochemical performance is highly correlated with the surface energy and the number of under-coordinated surface atoms. In contrast, the photoelectrochemical performance of the faceted TiO(2) nanoparticles sensitized with the commercially available MK-2 dye was highest with {010}-TiO(2) which yielded an overall cell efficiency of 6.1%, compared to 3.2% for {101}-TiO(2) and 2.6% for {001}-TiO(2) prepared under analogous conditions. Measurement of desorption kinetics and accompanying computational modeling suggests a stronger covalent interaction of the dye with the {010} and {101} facets compared with the {001} facet. Time-resolved THz spectroscopy and transient absorption spectroscopy measure faster electron injection dynamics when MK-2 is bound to {010} compared to other facets, consistent with extensive computational simulations which indicate that the {010} facet provides the most efficient and direct pathway for interfacial electron transfer. Our experimental and computational results establish for the first time that photoelectrochemical performance is dependent upon the binding energy of the dye as well as the crystalline structure of the facet, as opposed to surface energy alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA