Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 61(12): 2059-2071, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28707041

RESUMO

The ratio of intercellular to ambient CO2 concentrations (c i/c a) plays a key role in ecophysiology, micrometeorology, and global climatic change. However, systematic investigation on c i/c a variation and its determinants are rare. Here, the c i/c a was derived from measuring ecosystem fluxes in an even-aged monoculture of rubber trees (Hevea brasiliensis). We tested whether c i/c a is constant across environmental gradients and if not, which dominant factors control c i/c a variations. Evidence indicates that c i/c a is not a constant. The c i/c a exhibits a clear "V"-shaped diurnal pattern and varies across the environmental gradient. Water vapor pressure deficit (D) is the dominant factor controls over the c i/c a variations. c i/c a consistently decreases with increasing D. c i/c a decreases with square root of D as predicted by the optimal stomatal model. The D-driving single-variable model could simulate c i/c a as well as that of sophisticated model. Many variables function on longer timescales than a daily cycle, such as soil water content, could improve c i/c a model prediction ability. Ecosystem flux can be effectively used to calculate c i/c a and use it to better understand various natural cycles.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Hevea/metabolismo , Luz , Modelos Teóricos , Fotossíntese , Folhas de Planta/metabolismo , Pressão de Vapor
2.
Sci Rep ; 9(1): 16799, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728015

RESUMO

Although tropical forest soils contributed substantially global soil methane uptake, observations on soil methane fluxes in tropical forests are still sparse, especially in Southeast Asia, leading to large uncertainty in the estimation of global soil methane uptake. Here, we conducted two-year (from Sep, 2016 to Sep, 2018) measurements of soil methane fluxes in a lowland tropical forest site in Hainan island, China. At this tropical forest site, soils were substantial methane sink, and average annual soil methane uptake was estimated at 2.00 kg CH4-C ha-1 yr-1. The seasonality of soil methane uptake showed strong methane uptake in the dry season (-1.00 nmol m-2 s-1) and almost neutral or weak soil methane uptake in the wet season (-0.24 nmol m-2 s-1). The peak soil methane uptake rate was observed as -1.43 nmol m-2 s-1 in February, 2018, the driest and coolest month during the past 24 months. Soil moisture was the dominant controller of methane fluxes, and could explain 94% seasonal variation of soil methane fluxes. Soil temperature could not enhance the explanation of seasonal variation of soil methane fluxes on the top of soil moisture. A positive relationship between soil methane uptake and soil respiration was also detected, which might indicate co-variation in activities of methanotroph and roots and/or microbes for soil heterotrophic respiration. Our study highlights that tropical forests in this region acted as a methane sink.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA