Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2443-2453, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36964745

RESUMO

Quantum dots (QDs) are important frontier luminescent materials for future technology in flexible ultrahigh-definition display, optical information internet, and bioimaging due to their outstanding luminescence efficiency and high color purity. I-III-VI QDs and derivatives demonstrate characteristics of composition-dependent band gap, full visible light coverage, high efficiency, excellent stability, and nontoxicity, and hence are expected to be ideal candidates for environmentally friendly materials replacing traditional Cd and Pb-based QDs. In particular, their compositional flexibility is highly conducive to precise control energy band structure and microstructure. Furthermore, the quantum dot light-emitting diodes (QLEDs) exhibits superior prospects in monochrome display and white illumination. This review summarizes the recent progress of I-III-VI QDs and their application in LEDs. First, the luminescence mechanism is illustrated based on their electronic-band structural characteristics. Second, focusing on the latest progress of I-III-VI QDs, the preparation mechanism, and the regulation of photophysical properties, the corresponding application progress particularly in light-emitting diodes is summarized as well. Finally, we provide perspectives on the overall current status and challenges propose performance improvement strategies in promoting the evolution of QDs and QLEDs, indicating the future directions in this field.

2.
Adv Mater ; 36(21): e2304772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545966

RESUMO

White light-emitting diodes (WLEDs) are the key components in the next-generation lighting and display devices. The inherent toxicity of Cd/Pb-based quantum dots (QDs) limits the further application in WLEDs. Recently, more attention is focused on eco-friendly QDs and their WLEDs, especially the phosphor-free WLEDs based on mono-component, which profits from bias-insensitive color stability. However, the imbalanced carrier distribution between red-green-blue luminescent centers, even the absence of a certain luminescent center, hinders their balanced and stable photoluminescence/electroluminescence (PL/EL). Here, an In3+-doped strategy in Zn-Cu-Ga-S@ZnS QDs is first proposed, and the balanced carrier distribution is realized by non-equivalent substitution and In3+ doping concentration modulation. The alleviation of the green emitter by the In3+-related red emitter and the compensation of blue emitter by the Zn-related electronic states contribute to the balanced red-green-blue emitting with high PL quantum yield (PLQY) of 95.3% and long lifetime (T90) of over 1100 h in atmospheric conditions. Thus, the In3+-doped WLEDs can achieve exceedingly slight proportional variations between red-green-blue EL intensity over time (∆CIE = (0.007, 0.009)), and high champion CRI of 94.9. This study proposes a single-component QD with balanced and stable red-green-blue PL/EL spectrum, meeting the requirements of lighting and display.

3.
ACS Appl Mater Interfaces ; 15(43): 50254-50264, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847863

RESUMO

I-III-VI quantum dots (QDs) and derivatives (I, III, and VI are Ag+/Cu+, Ga3+/In3+, and S2-/Se2-, respectively) are the ideal candidates to replace II-VI (e.g., CdSe) and perovskite QDs due to their nontoxicity, pure color, high photoluminescence quantum yield (PLQY), and full visible coverage. However, the chaotic cation alignment in multielement systems can easily lead to the formation of multiple surface vacancies, highlighted as VI and VVI, leading to nonradiative recombination and nonequilibrium carrier distribution, which severely limit the performance improvement of materials and devices. Here, based on Zn-Ag-In-Ga-S QDs, we construct an ultrathin indium sulfide shell that can passivate electron vacancies and convert donor/acceptor level concentrations. The optimized In-rich 2-layer indium sulfide structure not only enhances the radiative recombination rate by preventing further VS formation but also achieves the typical DAP emission enhancement, achieving a significant increase in PLQY to 86.2% at 628 nm. Moreover, the optimized structure can mitigate the lattice distortion and make the carrier distribution in the interior of the QDs more balanced. On this basis, red QD light-emitting diodes (QLEDs) with the highest external quantum efficiency (EQE; 5.32%) to date were obtained, providing a novel scheme for improving I-III-VI QD-based QLED efficiency.

4.
Nanoscale ; 15(12): 5696-5704, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36804729

RESUMO

Anion-exchange reactions are recognized as a vital and facile post-synthesis method to precisely manipulate the emission spectra of perovskite quantum dots (QDs). However, the anion-exchange process often induces adverse structural evolution and trap-mediated mechanisms, so mixed-halide perovskite QDs suffer inefficient anion exchange and poor spectra-stability issues, which limits access to high-quality primary color perovskite QDs for display applications. Here we report an Al3+ bonding-doping synergistic strategy for manufacturing stable mixed Br/Cl deep-blue perovskite QDs. By doping Al3+ into perovskite QDs, highly-efficient Cl- anion exchange and a large-range blue shift of the PL spectrum (∼62 nm with only 0.1 mmol of Cl feed) can be easily achieved. Notably, the Al3+-mediated deep-blue emission sample exhibits superior stability against moisture and electric fields. It also shows an elevated valence band maximum level. Based on the anion-exchanged QDs, a spectrum-stable deep-blue QLED with an EQE of 1.38% at 463 nm is achieved. Our findings demonstrate a feasible and promising strategy for developing high-performance deep-blue perovskite materials and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA