Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 194(2): 634-661, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37770070

RESUMO

Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.


Assuntos
Lisina Acetiltransferases , Synechococcus , Lisina Acetiltransferases/genética , Lisina Acetiltransferases/metabolismo , Lisina/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Acetilação
2.
Mol Cell Proteomics ; 22(2): 100490, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566904

RESUMO

Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Lisina/metabolismo , Proteômica , Aflatoxinas/metabolismo , Processamento de Proteína Pós-Traducional
3.
Mol Cell Proteomics ; 22(4): 100521, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858286

RESUMO

Lysine methylation is a conserved and dynamic regulatory posttranslational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1) and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.


Assuntos
Cianobactérias , Ferredoxinas , Synechocystis , Transferência de Energia , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Lisina , Metiltransferases/metabolismo , NADP/metabolismo , Synechocystis/metabolismo , Cianobactérias/metabolismo
4.
J Proteome Res ; 23(5): 1689-1701, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565891

RESUMO

Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Synechococcus , Lisina/metabolismo , Synechococcus/metabolismo , Synechococcus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peróxido de Hidrogênio/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Mutagênese Sítio-Dirigida , Fotossíntese , Cianobactérias/metabolismo , Cianobactérias/genética , Espectrometria de Massas
5.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427982

RESUMO

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Assuntos
Fotossíntese , Synechocystis , Fotossíntese/genética , Synechocystis/genética , Synechocystis/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ficocianina/metabolismo
6.
Nutr Metab Cardiovasc Dis ; 34(4): 1046-1053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218715

RESUMO

BACKGROUND AND AIMS: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide. Inflammation is pivotal in atherosclerosis development. The dietary inflammatory index (DII) is a tool to quantify the overall inflammatory potential of diet. The association between DII and all-cause and cardiovascular mortality in ASCVD patients remains undetermined. METHODS AND RESULTS: Participants included individuals with ASCVD from the National Health and Nutrition Examination Survey from 1999 to 2018. A total of 5006 participants were included, during a median of 6.6 years of follow-up, of which 2220 (44.4 %) were dead. The Cox proportional hazard model evaluated the association between DII and all-cause and cardiovascular mortality. Participants in the higher DII quartile exhibited a higher mortality of ASCVD. Compared with the patients in quartile 1, those in quartile 4 had a 34 % increased risk for all-cause mortality (HR = 1.34, 95 % CI = 1.21-1.61, p = 0.001). Cardiovascular mortality showed a similar trend, however the correlation is not significant. The restricted cubic spline (RCS) showed that the relationship between DII and all-cause and cardiovascular mortality was linear. Subgroup analysis revealed a persistently positive association between DII and all-causemortality across population subgroups. However, an interaction was detected between DII and alcohol history in relation to cardiovascular mortality. CONCLUSION: DII was positively correlated with the all-cause mortality of ASCVD patients. The intake of a pro-inflammatory diet may increase mortality in ASCVD patients.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Inquéritos Nutricionais , Estudos Prospectivos , Dieta/efeitos adversos , Inflamação/diagnóstico , Aterosclerose/diagnóstico , Fatores de Risco
7.
Mol Cell Proteomics ; 20: 100013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33568340

RESUMO

Aspergillus flavus (A. flavus), a pathogenic fungus, can produce carcinogenic and toxic aflatoxins that are a serious agricultural and medical threat worldwide. Attempts to decipher the aflatoxin biosynthetic pathway have been hampered by the lack of a high-quality genome annotation for A. flavus. To address this gap, we performed a comprehensive proteogenomic analysis using high-accuracy mass spectrometry data for this pathogen. The resulting high-quality data set confirmed the translation of 8724 previously predicted genes and identified 732 novel proteins, 269 splice variants, 447 single amino acid variants, 188 revised genes. A subset of novel proteins was experimentally validated by RT-PCR and synthetic peptides. Further functional annotation suggested that a number of the identified novel proteins may play roles in aflatoxin biosynthesis and stress responses in A. flavus. This comprehensive strategy also identified a wide range of posttranslational modifications (PTMs), including 3461 modification sites from 1765 proteins. Functional analysis suggested the involvement of these modified proteins in the regulation of cellular metabolic and aflatoxin biosynthetic pathways. Together, we provided a high-quality annotation of A. flavus genome and revealed novel insights into the mechanisms of aflatoxin production and pathogenicity in this pathogen.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Aspergillus flavus/metabolismo , Cromatografia Líquida , Proteínas Fúngicas/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteogenômica , Proteoma , Espectrometria de Massas em Tandem
8.
J Proteome Res ; 21(4): 1137-1152, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253437

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly recognized as functional regulators of human cancers. BRAF-activated noncoding RNA (BANCR), an oncogenic lncRNA, has a carcinogenic effect on many types of cancers. However, the clinical significance and molecular mechanisms of BANCR in cervical cancer are still unclear. Here, we generated BANCR knockout cell lines via CRISPR/Cas9 editing and revealed that BANCR plays roles in the apoptosis, proliferation, and migration of HeLa cells. A quantitative proteomics strategy was employed to globally identify BANCR-regulated proteins in HeLa cells. In total, we identified 569 differentially expressed proteins (DEPs) upon knockout of BANCR in HeLa cells. Bioinformatic analysis revealed that these DEPs were involved in diverse cellular pathways. Functional studies revealed that BANCR exerts its effects on the proliferation and apoptosis of HeLa cells through the regulation of cAMP-responsive element binding protein 1 (CREB1) expression. Mechanistically, BANCR could inhibit the expression of miR-582-5p, and CREB1 is a direct target of miR-582-5p; therefore, BANCR may exert its function by regulating CREB1 expression via targeting miR-582-5p in cervical cancer cells. Collectively, this study established a proteome-wide BANCR regulatory network, which provides novel insight into the molecular pathogenesis of cervical cancer and can serve as a basis for the development of targeted therapies.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética
9.
J Proteome Res ; 20(8): 3963-3976, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270261

RESUMO

Anabaena sp. PCC 7120 (Anabaena 7120) is a photoautotrophic filamentous cyanobacterium capable of fixing atmospheric nitrogen. It is a model organism used for studying cell differentiation and nitrogen fixation. Under nitrogen deficiency, Anabaena 7120 forms specialized heterocysts capable of nitrogen fixation. However, the molecular mechanisms involved in the cyanobacterial adaptation to nitrogen deficiency are not well understood. Here, we employed a label-free quantitative proteomic strategy to systematically investigate the nitrogen deficiency response of Anabaena 7120 at different time points. In total, 363, 603, and 669 proteins showed significant changes in protein abundance under nitrogen deficiency for 3, 12, and 24 h, respectively. With mapping onto metabolic pathways, we revealed proteomic perturbation and regulation of carbon and nitrogen metabolism in response to nitrogen deficiency. Functional analysis confirmed the involvement of nitrogen stress-responsive proteins in biological processes, including nitrogen fixation, photosynthesis, energy and carbon metabolism, and heterocyst development. The expression of 10 proteins at different time points was further validated by using multiple reaction monitoring assays. In particular, many dysregulated proteins were found to be time-specific and involved in heterocyst development, providing new candidates for future functional studies in this model cyanobacterium. These results provide novel insights into the molecular mechanisms of nitrogen stress responses and heterocyst development in Anabaena 7120.


Assuntos
Anabaena , Proteômica , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Fixação de Nitrogênio
10.
Environ Microbiol ; 23(9): 5334-5348, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097354

RESUMO

Ras subfamily proteins are molecular switches in signal transduction pathways of many eukaryotes that regulate a variety of cellular processes. Here, the Ras subfamily, encoded by six genes, was identified in Aspergillus flavus: rasA, rasB, rasC, rab-33, rheb and rsr1. The rsr1 deletion mutant (∆rsr1), rheb deletion mutant (∆rheb) and double deletion mutant (∆rheb/rsr1) displayed significantly decreased growth and sporulation. Sclerotia formation was significantly decreased for ∆rheb or ∆rheb/rsr1 but increased for ∆rsr1. Aflatoxin production was significantly increased in ∆rheb but decreased in ∆rsr1 and ∆rheb/rsr1. We found that rsr1 and rheb are crucial for the pathogenicity of A. flavus. Quantitative proteomics identified 520 differentially expressed proteins (DEPs) for the ∆rsr1 mutant and 133 DEPs for the ∆rheb mutant. These DEPs were annotated in multiple biological processes and KEGG pathways in A. flavus. Importantly, we identified the cytokinesis protein SepA in the protein-protein interaction network of rsr1, and deletion mutants showed that SepA has pleiotropic effects on growth and AF biosynthesis, which may depend on Rsr1 for regulation in A. flavus. Our results indicated that these Ras subfamily proteins exhibited functional redundancy with each other but there were also differences in A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência/genética , Proteínas ras
11.
Plant Physiol ; 184(2): 762-776, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719110

RESUMO

Lys deacylases are essential regulators of cell biology in many contexts. Here, we have identified CddA (cyanobacterial deacetylase/depropionylase), a Lys deacylase enzyme expressed in the cyanobacterium Synechococcus sp. PCC 7002 that has both deacetylase and depropionylase activity. Loss of the gene cddA led to slower growth and impaired linear and cyclic photosynthetic electron transfer. We determined the crystal structure of this depropionylase/deacetylase at 2.1 Å resolution and established that it has a unique and characteristically folded α/ß structure. We detected an acyl binding site within CddA via site-directed mutagenesis and demonstrated that this site is essential for the deproprionylase activity of this enzyme. Through a proteomic approach, we identified a total of 598 Lys residues across 382 proteins that were capable of undergoing propionylation. These propionylated proteins were highly enriched for photosynthetic and metabolic functionality. We additionally demonstrated that CddA was capable of catalyzing in vivo and in vitro Lys depropionylation and deacetylation of Fru-1,6-bisphosphatase, thereby regulating its enzymatic activity. Our identification of a Lys deacylase provides insight into the mechanisms globally regulating photosynthesis and carbon metabolism in cyanobacteria and potentially in other photosynthetic organisms as well.


Assuntos
Lisina/metabolismo , Synechococcus/enzimologia , Fotossíntese , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento
12.
Curr Genomics ; 22(5): 373-383, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35283670

RESUMO

Background: Rhizoctonia solani is a pathogenic fungus that causes serious diseases in many crops, including rice, wheat, and soybeans. In crop production, it is very important to understand the pathogenicity of this fungus, which is still elusive. It might be helpful to comprehensively understand its genomic information using different genome annotation strategies. Methods: Aiming to improve the genome annotation of R. solani, we performed a proteogenomic study based on the existing data. Based on our study, a total of 1060 newly identified genes, 36 revised genes, 139 single amino acid variants (SAAVs), 8 alternative splicing genes, and diverse post-translational modifications (PTMs) events were identified in R. solani AG3. Further functional annotation on these 1060 newly identified genes was performed through homology analysis with its 5 closest relative fungi. Results: Based on this, 2 novel candidate pathogenic genes, which might be associated with pathogen-host interaction, were discovered. In addition, in order to increase the reliability and novelty of the newly identified genes in R. solani AG3, 1060 newly identified genes were compared with the newly published available R. solani genome sequences of AG1, AG2, AG4, AG5, AG6, and AG8. There are 490 homologous sequences. We combined the proteogenomic results with the genome alignment results and finally identified 570 novel genes in R. solani. Conclusion: These findings extended R. solani genome annotation and provided a wealth of resources for research on R. solani.

13.
Sensors (Basel) ; 21(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072810

RESUMO

In the field of pedestrian dead reckoning (PDR), the zero velocity update (ZUPT) method with an inertial measurement unit (IMU) is a mature technology to calibrate dead reckoning. However, due to the complex walking modes of different individuals, it is essential and challenging to determine the ZUPT conditions, which has a direct and significant influence on the tracking accuracy. In this research, we adopted an adaptive zero velocity update (AZUPT) method based on convolution neural networks to classify the ZUPT conditions. The AZUPT model was robust regardless of the different motion types of various individuals. AZUPT was then implemented on the Zynq-7000 SoC platform to work in real time to validate its computational efficiency and performance superiority. Extensive real-world experiments were conducted by 60 different individuals in three different scenarios. It was demonstrated that the proposed system could work equally well in different environments, making it portable for PDR to be widely performed in various real-world situations.


Assuntos
Pedestres , Algoritmos , Humanos , Movimento (Física) , Redes Neurais de Computação , Caminhada
14.
Environ Microbiol ; 22(7): 2792-2810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32250030

RESUMO

Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/patogenicidade , Catalase/metabolismo , Virulência/genética , Antioxidantes/metabolismo , Aspergillus flavus/genética , Catalase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência , Virulência/efeitos dos fármacos
15.
Mol Cell Proteomics ; 17(3): 457-471, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298838

RESUMO

Aspergillus flavus (A. flavus) is a ubiquitous saprophytic and pathogenic fungus that produces the aflatoxin carcinogen, and A. flavus can have tremendous economic and health impacts worldwide. Increasing evidence demonstrates that lysine succinylation plays an important regulatory role in metabolic processes in both bacterial and human cells. However, little is known about the extent and function of lysine succinylation in A. flavus Here, we performed a global succinylome analysis of A. flavus using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 985 succinylation sites on 349 succinylated proteins were identified in this pathogen. Bioinformatics analysis revealed that the succinylated proteins were involved in various biological processes and were particularly enriched in the aflatoxin biosynthesis process. Site-specific mutagenesis and biochemical studies showed that lysine succinylation on the norsolorinic acid reductase NorA (AflE), a key enzyme in aflatoxins biosynthesis, can affect the production of sclerotia and aflatoxins biosynthesis in A. flavus. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and aflatoxins biosynthesis in A. flavus Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this pathogen.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Ácido Succínico/metabolismo , Processamento de Proteína Pós-Traducional
16.
J Cell Biochem ; 120(5): 7834-7844, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30456861

RESUMO

Dexmedetomidine (Dex) was reported to reduce ischemia-reperfusion (I/R) injury in kidney and brain tissues. Thus, we aimed to study the role and mechanism of Dex in cerebral I/R injury by inhibiting hypoxia-inducible factor-1α (HIF-1α) and apoptosis. First, I/R injury models were established. Six groups were assigned after different treatments: sham, I/R, I/R+Dex, I/R+2-methoxyestradiol (2ME2) (HIF-1α inhibitor), I/R+CoCl 2 (HIF-1α activator), and I/R+Dex+CoCl 2 groups. Neurological function, cerebral infarction volume, survival, and apoptosis of brain cells were then analyzed. Besides, immunohistochemistry and Western blot analysis were used to detect the expression of HIF-1α, BCL-2[B-cell leukemia/lymphoma 2] adenovirus E1B interacting protein 3 (BNIP3), B-cell leukemia/lymphoma 2 (BCL2), BCL2[B-cell leukemia/lymphoma 2] associated X (Bax), and cleaved-caspase3 proteins in brain tissues. I/R rats showed cerebral infarction, increased neurological function score, number of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL)-positive cells and HIF-1α-positive cells as well as decreased neurons. Inhibition of HIF-1α can reduce the apoptosis induced by I/R, and overexpression of HIF-1α can aggravate apoptosis in brain tissue of I/R rats. Furthermore, activation of HIF-1α expression blocks the inhibitory effect of Dex on neuronal apoptosis in I/R rats. Dex may inhibit the neuronal apoptosis of I/R rats by inhibiting the HIF-1α pathway and then improve the cerebral I/R injury in rats.

17.
Environ Microbiol ; 21(12): 4792-4807, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31608565

RESUMO

Aspergillus flavus is a pathogenic fungus that produces carcinogenic aflatoxins, posing a great threat to crops, animals and humans. Lysine acetylation is one of the most important reversible post-translational modifications and plays a vital regulatory role in various cellular processes. However, current information on the extent and function of lysine acetylation and aflatoxin biosynthesis in A. flavus is limited. Here, a global acetylome analysis of A. flavus was performed by peptide pre-fractionation, pan-acetylation antibody enrichment and liquid chromatography-mass spectrometry. A total of 1313 high-confidence acetylation sites in 727 acetylated proteins were identified in A. flavus. These acetylation proteins are widely involved in glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle and aflatoxin biosynthesis. AflO (O-methyltransferase), a key enzyme in aflatoxin biosynthesis, was found to be acetylated at K241 and K384. Deletion of aflO not only impaired conidial and sclerotial developments, but also dramatically suppressed aflatoxin production and pathogenicity of A. flavus. Further site-specific mutations showed that lysine acetylation of AflO could also result in defects in development, aflatoxin production and pathogenicity, suggesting that acetylation plays a vital role in the regulation of the enzymatic activity of AflO in A. flavus. Our findings provide evidence for the involvement of lysine acetylation in various biological processes in A. flavus and facilitating in the elucidation of metabolic networks.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Acetilação , Arachis/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Ciclo do Ácido Cítrico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Espectrometria de Massas , Redes e Vias Metabólicas , Metiltransferases/química , Metiltransferases/genética , Via de Pentose Fosfato , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Virulência
18.
Mol Cell Proteomics ; 16(7): 1297-1311, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28550166

RESUMO

Nε-Acetylation of lysine residues represents a frequently occurring post-translational modification widespread in bacteria that plays vital roles in regulating bacterial physiology and metabolism. However, the role of lysine acetylation in cyanobacteria remains unclear, presenting a hurdle to in-depth functional study of this post-translational modification. Here, we report the lysine acetylome of Synechococcus sp. PCC 7002 (hereafter Synechococcus) using peptide prefractionation, immunoaffinity enrichment, and coupling with high-precision liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis of Synechococcus identified 1653 acetylation sites on 802 acetylproteins involved in a broad range of biological processes. Interestingly, the lysine acetylated proteins were enriched for proteins involved in photosynthesis, for example. Functional studies of the photosystem II manganese-stabilizing protein were performed by site-directed mutagenesis and mutants mimicking either constitutively acetylated (K99Q, K190Q, and K219Q) or nonacetylated states (K99R, K190R, and K219R) were constructed. Mutation of the K190 acetylation site resulted in a distinguishable phenotype. Compared with the K190R mutant, the K190Q mutant exhibited a decreased oxygen evolution rate and an enhanced cyclic electron transport rate in vivo Our findings provide new insight into the molecular mechanisms of lysine acetylation that involved in the negative regulation of oxygen evolution in Synechococcus and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in photosynthesis in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica/métodos , Synechococcus/metabolismo , Acetilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromatografia Líquida , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Peptídeos/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Processamento de Proteína Pós-Traducional , Synechococcus/química , Synechococcus/genética , Espectrometria de Massas em Tandem
19.
Mol Cell Proteomics ; 16(12): 2243-2253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018126

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Proteômica/métodos , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Grupo dos Citocromos b/química , Ferritinas/química , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Proteínas Ribossômicas/química , Células THP-1
20.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561603

RESUMO

Lysine propionylation is a reversible and widely distributed post-translational modification that is known to play a regulatory role in both eukaryotes and prokaryotes. However, the extent and function of lysine propionylation in photosynthetic organisms remains unclear. Cyanobacteria are the most ancient group of Gram-negative bacteria capable of oxygenic photosynthesis, and are of great importance to global carbon and nitrogen cycles. Here, we carried out a systematic study of lysine propionylaiton in cyanobacteria where we used Synechocystis sp. PCC 6803 (Synechocystis) as a model. Combining high-affinity anti-propionyllysine pan antibodies with high-accuracy mass spectrometry (MS) analysis, we identified 111 unique lysine propionylation sites on 69 proteins in Synechocystis. Further bioinformatic analysis showed that a large fraction of the propionylated proteins were involved in photosynthesis and metabolism. The functional significance of lysine propionylation on the enzymatic activity of fructose-1,6-bisphosphatase (FbpI) was studied by site-directed mutagenesis and biochemical studies. Further functional studies revealed that the propionylation level of subunit II of photosystem I (PsaD) was obviously increased after high light (HL) treatment, suggesting that propionylation may be involved in high light adaption in Synechocystis. Thus, our findings provide novel insights into the range of functions regulated by propionylation and reveal that reversible propionylation is a functional modification with the potential to regulate photosynthesis and carbon metabolism in Synechocystis, as well as in other photosynthetic organisms.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Lisina/metabolismo , Fotossíntese , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Anotação de Sequência Molecular , Proteoma , Proteômica/métodos , Reprodutibilidade dos Testes , Synechocystis/genética , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA