Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 41252-41258, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087528

RESUMO

Many molecules have broad fingerprint absorption spectra in mid-wave infrared range which requires broadly tunable lasers to cover the interested spectrum in one scan. We report a strain-balanced, InAlAs/InGaAs/InP quantum cascade laser structure based on diagonal transition active region with high output power and and wide tuning range at λ ∼ 8.9 µm. The maximum pulsed optical power and the wall-plug efficiency at room temperature are 4 W and 11.7%, respectively. Maximum continuous wave double-facet power is 1.2 W at 25 °C for a 4 mm by 9 µm laser mounted epi-side down on a diamond/copper composite submount. The maximum pulsed and continuous wave external-cavity tuning range are from 7.71 µm to 9.15 µm and from 8 µm to 8.9 µm, respectively. The continuous wave power of the external cavity mode exceeds 200 mW across the entire spectrum.

2.
Opt Express ; 28(24): 36497-36504, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379742

RESUMO

We report an ultralow power consumption of a quantum cascade laser (QCL) emitting at λ ∼ 4.6 µm operating in continuous-wave mode at room temperature. The ultralow power consumption is achieved by using a high gain active region and shortening the device size. For the device with a 0.5-mm-long cavity and 3.2-µm-wide ridge, the threshold power consumption is as low as 0.26 W with an optical output power of 12.6 mW at 10 °C in continuous-wave mode, which represents the world's most advanced level. Furthermore, the threshold power consumption varies linearly with the operating temperature, where the linear change rate of 2.3 mW/K from 10 to 40 °C is low. As a result, the devices also show low threshold power consumption values of 0.33 W even at 40 °C in continuous-wave mode with an optical output power of 6.1 mW. In addition, the lasers can maintain a single-mode operation due to the short cavity length even if no distributed feedback grating is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA