Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 20(32): 10052-64, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25042065

RESUMO

The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

2.
Chemphyschem ; 15(6): 1207-15, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24677690

RESUMO

To supplement our study on thiocyanate-free ruthenium sensitizers (TFRS) for dye-sensitized solar cells (DSSCs), which belong to a class of Ru(II)-based complexes coordinated by a single 4,4'-dicarboxylic acid-2,2'-bipyridine and two symmetrically arranged functionalized trans-azolate chelates, we carefully isolated and characterized the second and less-abundant stereoisomer, in which the two pyridyl azolate ancillaries are asymetrically cis-arranged to each other. Two distinctive ancillaries, namely: 5-[4-(5-hexyl-2-thienyl)-2-pyridinyl]-3-trifluoromethyl pyrazole and 5-(6-tert-butyl-1-isoquinolinyl)-3-trifluoromethyl pyrazole, were employed in this study, giving a total of four sensitizers, that is, thienyl substituted TFRS-2 a and 2 b, and isoquinolinyl substituted TFRS-52 a and 52 b, in which the suffix b indicates the cis-stereoisomers. To gain insight into their fundamental properties their photophysical, electrochemical, and spectroelectrochemical behavior was investigated by density functional theory. Upon comparison of the correspondingly fabricated DSSCs, the sensitizers TFRS-2 a and 52 a yielded significantly higher conversion efficiencies than their asymmetrical cis-counterparts, TFRS-2 b and 52 b. To rationalize the cell performances charge extraction/photovoltage decay and impedance spectroscopic measurements were carried out to compare the rates of interfacial electron recombination from the TiO2 conduction band to the electrolyte.

3.
Adv Mater ; 26(38): 6647-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25178565

RESUMO

A novel sequential layer-by-layer sub-100 °C vacuum-sublimation method to fabricate planar-type organometal halide perovskite solar cells is developed. Very uniform and highly crystalline perovskite thin films with 100% surface coverage are produced. The cells attain maximum and average efficiencies up to 15.4% and 14%, respectively. This low- temperature, all-vacuum process is suitable for a wide variety of rigid and flexible applications.

4.
ChemSusChem ; 6(8): 1366-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23843354

RESUMO

A series of Os(II) sensitizers (TFOS-x, in which x=1, 2, or 3) with a single 4,4'-dicarboxy-2,2'-dipyridine (H2 dcbpy) anchor and two chelating 2-pyridyl (or 2-pyrimidyl) triazolate ancillaries was successfully prepared. Single-crystal X-ray structural analysis showed that the core geometry of the Os(II) -based sensitizers consisted of one H2 dcbpy unit and two eclipsed cis-triazolate fragments; this was notably different from the Ru(II) -based counterparts, in which the azolate (both pyrazolate and triazolate) fragments are located at the mutual trans-positions. The basic properties were extensively probed by using spectroscopic and electrochemical methods as well as time-dependent density functional theory (TD-DFT) calculations. Fabrication of dye-sensitized solar cells (DSCs) was then attempted by using the I(-) /I3 (-) -based electrolyte solution. One such DSC device, which utilized TFOS-2 as the sensitizer, showed promising performance characteristics with a short-circuit current density (JSC ) of 15.7 mA cm(-2) , an open-circuit voltage of 610 mV, a fill factor of 0.63, and a power conversion efficiency of 6.08 % under AM 1.5G simulated one-sun irradiation. Importantly, adequate incident photon-to-current conversion efficiency performances were observed for all TFOS derivatives over the wide spectral region of 450 to 950 nm, showing a panchromatic light harvesting capability that extended into the near-infrared regime. Our results underlined a feasible strategy for maximizing JSC and increasing the efficiency of DSCs.


Assuntos
Corantes/química , Desenho de Fármacos , Fontes de Energia Elétrica , Compostos Heterocíclicos/química , Compostos Organometálicos/química , Osmio/química , Energia Solar , Eletroquímica , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Rutênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA