Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 40(9): 843-856, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35759955

RESUMO

Quiescent hair follicle stem cells (HFSCs) reside in specialized bulge niche where they undergo activation and differentiation upon sensing niche-dependent signals during hair follicle (HF) homeostasis and wound repair. The underlying mechanism of HFSCs and bulge niche maintenance is poorly understood. Our previous study has reported that a transcription factor, forkhead box P1 (Foxp1), functions to maintain the quiescence of HFSCs. Here, we further discovered that forkhead box P4 (Foxp4), a close family member of Foxp1, had similar expression profiles in various components of HFs and formed a complex with Foxp1 in vitro and in vivo. The HF-specific deficiency of Foxp4 resulted in the precocious activation of HFSCs during hair cycles. In contrast to single Foxp1 or Foxp4 conditional knockout (cKO) mice, Foxp1/4 double cKO exerted an additive effect in the spectrum and severity of phenotypes in HFSC activation, hair cycling acceleration and hair loss, coupled with remarkable downregulation of fibroblast growth factor 18 (Fgf18) and bone morphogenetic protein 6 (Bmp6) expression in bulge cells. In addition, the double KO of Foxp1/4 induced the apoptosis of K6-positive (K6+) inner bulge cells, a well-established stem cell (SC) niche, thus resulting in the destruction of the bulge SC niche and recurrent hair loss. Our investigation reveals the synergistic role of Foxp1/4 in sustaining K6+ niche cells for the quiescence of HFSCs.


Assuntos
Proteína Morfogenética Óssea 6 , Nicho de Células-Tronco , Alopecia/metabolismo , Animais , Apoptose/genética , Proteína Morfogenética Óssea 6/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso , Camundongos , Proteínas Repressoras/metabolismo
2.
Environ Res ; 222: 115328, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693463

RESUMO

Soil heavy metals (HMs) contamination stemming from smelting and mining activities is becoming a global concern due to its devastating impacts on the environment and human health. In this study, 128 soil samples were investigated to assess the spatial distribution, contamination characteristics, ecological and human health risk of HMs in soils near a smelting area by using BP artificial neural network (BP-ANN) and Monte Carlo simulation. The results showed that the concentrations of all five HMs in the soil greatly exceeded the background value of study area with a basic trend: Pb > As > Cr > Cd > Hg, indicating a high pollution level. Arsenic and lead were the major pollutants in the study area with an exceedance rate of 78.95% and 28.95%, respectively. The toxic fume and dust emitted during the smelting process were identified as the major sources of HMs pollution in soil, while Cd pollution was mainly caused by agricultural activities near the study area. The probabilistic risk assessment suggested that the average HQ values of five HMs for children and adults exceeded the acceptable threshold with a trend: As > Pb > Cr > Cd > Hg. The average CR values of As, Cr and Pb for all population were greatly larger than the acceptable threshold (CR ≥ 1), indicating a high cancer risk. However, the CR values of Cd for adults and children were within the acceptable threshold (CR < 1), implying no cancer risk. The results of the present study can provide some insight into the contamination characteristics, ecological and human health risk of HMs in contaminated soils by mining and smelting activities, which can help prevent and control soil pollution and environmental risk.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , China
3.
Environ Res ; 231(Pt 2): 116153, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196693

RESUMO

Arsenic contamination of groundwater is becoming a major global issue as it can severely affect the safety of drinking water and human health. In this paper, 448 water samples were investigated to study the spatiotemporal distribution, source identification and human health risk of groundwater arsenic pollution in the central Yinchuan basin by applying a hydrochemical and isotopic approach. The results showed that arsenic concentrations in groundwater ranged from 0.7 µg/L to 26 µg/L with a mean of 2.19 µg/L, and 5.9% of samples were above 5 µg/L, indicating the arsenic pollution of groundwater in the study area. High arsenic groundwater was mainly distributed in the northern and eastern areas along the Yellow river. The main hydrochemistry type of high arsenic groundwater was HCO3·SO4-Na·Mg, and the dissolution of arsenic-bearing minerals in sediment, irrigation water infiltration and aquifer recharge from the Yellow river were the main sources of arsenic in groundwater. The arsenic enrichment was dominantly controlled by the TMn redox reaction and the competitive adsorption of HCO3-, and the influence of anthropogenic activities was limited. The health risk assessment suggested that the carcinogenic risk of As for children and adults greatly exceeded the acceptable risk threshold of 1E-6, displaying a high carcer risk, while the non-carcinogenic risks of As, F-, TFe, TMn and NO3- in 2019 were largely higher than the acceptable risk threshold (HQ > 1). The present study provides insight into the occurrence, hydrochemical processes and potential health risk of arsenic pollution in groundwater.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Adulto , Criança , Humanos , Arsênio/análise , Monitoramento Ambiental/métodos , Água Potável/análise , Medição de Risco , Poluentes Químicos da Água/análise , China
4.
Environ Res ; 204(Pt A): 111956, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34454937

RESUMO

Water quality evaluation and health risk assessment are not only the basis of environmental protection work, but also of great significance to water environment supervision and management. In this paper, the fuzzy comprehensive evaluation for water quality was improved by using the analytic hierarchy process (AHP) and Entropy, and a health risk assessment model based on triangular fuzzy theory was developed. The evaluation results show 5 water categories: Class-1 (n = 1, 2%), Class-2 (n = 14, 32%), Class-3 (n = 15, 34%), Class-4 (n = 8, 18%) and Class-5 (n = 6, 14%), manifesting about 67% of the phreatic water can be used for drinking purposes in the research area. The Chadha diagram provides hydrochemical facies of the phreatic water are mainly NaCl type (n = 16, 36%) and Ca-Mg-Na type (n = 15, 34%). Fluorine as non-carcinogenic factor in health risk assessment, showing moderate correlation with SO42- (r = 0.54) and low correlation with Na+ (r = 0.38) in Pearson correlation analysis. The order of non-carcinogenic risk per year is as follow: Class-2, Class-3, All, Class-4 and Class-5 with the mean of 0.29, 0.51, 0.67, 0.86 and 1.55 × 10-8 for adults, 0.54, 0.95, 1.27, 1.58 and 2.89 × 10-8 for children. Compare with adults, children undertake higher health risk, in research area. Particularly, the region accepting Class-5 water supplement encounter high non-carcinogenic risk, where risk level is 2.24 and 2.28 times to the average risk level for adults and children, respectively. This paper provides insights into solving uncertainties in groundwater management and environmental protection, as well as into fuzzy logic techniques addressing pollution.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adulto , Processo de Hierarquia Analítica , Criança , China , Entropia , Monitoramento Ambiental , Lógica Fuzzy , Humanos , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
5.
Environ Res ; 214(Pt 4): 113884, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843272

RESUMO

Groundwater is a significant supply of freshwater for the world's population, being used for residence, agricultural, and industrial purposes. One-third of the world's population relies on groundwater for drinking applications. Groundwater pollution is a global issue with serious consequences for human health and the environment. It needs a thorough understanding because access to safe drinking water is a basic human right. However, groundwater quality is being threatened by urbanisation, agricultural activities, industrial activities, and climate change, among others. Pollutants like hydrocarbons, toxic metals, pesticides, microplastics, nanoparticles and other emerging contaminants mean a risk to human health and sustainable socioeconomic development. To ensure sustained groundwater usage to assess, monitor, and regulate groundwater quality issues is essential. Excess withdrawal alters groundwater flow together with contaminants like uranium, radon, radium, salinity, arsenic and fluoride, resulting in mediocre water quality. Consequently, chemical and biological contaminants owing to domestic, industrial, and agricultural practices alter water quality and threaten human health. Controlling and management of groundwater pollution and related health risks require developing vulnerability, hazard, and risk maps.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Plásticos , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Environ Res ; 214(Pt 1): 113772, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792168

RESUMO

Toxic heavy metals pollution in urban soil has become a major global issue due to its adverse effects on the environment and human health. In this paper, 26 soil samples were analyzed to assess the speciation, bioavailability and human health risk of Arsenic (As), Mercury (Hg), Lead (Pb) and Cadmium (Cd) in urban soils of a heavy industrial city in NE China by using a Monte Carlo simulation approach. The results showed that As, Hg, Pb and Cd concentrations in the soil all exceed the corresponding background value of study area. Mercury displays the highest value of geo-accumulation index (Igeo), followed by Cd, Pb and As. The pollution load index (PLI) value (>2) indicates a moderate pollution level in the study area. The chemical speciation of HMs mainly exists in residual fraction except Cd. The probabilistic health risk assessment demonstrated that the mean values of Total Carcinogenic Risk (TCR) and Hazard Index (HI) calculated with total concentration are at the unacceptable level, with a higher risk to children than adults. However, the mean values calculated with bioavailable fraction are all within the acceptable level. The mean value of TCR and HI obtained by bioavailable fraction is about 96% and 95% lower than that obtained by total concentration, respectively. Thus, this study suggested that the bioavailable fraction of HMs is a more reliable parameter for health risk assessment, while the total concentration of HMs can overestimate the true risk. The results of this study provide some insight into the speciation, bioavailability and health risks of toxic heavy metals in urban soils in those heavy industrial cities.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Arsênio/farmacocinética , Disponibilidade Biológica , Cádmio/farmacocinética , Criança , China , Monitoramento Ambiental , Humanos , Chumbo/farmacocinética , Mercúrio/farmacocinética , Metais Pesados/farmacocinética , Método de Monte Carlo , Receptores de Antígenos de Linfócitos T , Medição de Risco , Solo , Poluentes do Solo/farmacocinética
7.
Environ Res ; 208: 112680, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998809

RESUMO

Arsenic is a toxic element widely spread in soils and groundwater that can cause a great hazard to ecology and human health. In this paper, 51 groundwater and 12 sediment samples were analyzed to investigate the sources and evolution mechanism of arsenic and identify the hydrochemical characteristics of groundwater in Hetao Plain, Inner Mongolia through Kriging interpolation, Piper trilinear diagram and ion correlation analysis. Results show that high arsenic groundwater is mainly distributed in the areas with reducing environment. Arsenic has a strong positive correlation with bicarbonic acid and a negative correlation with nitric acid. Arsenic in the sediment is easily adsorbed by iron-manganese compounds. In a reducing environment, arsenic is however released while iron-manganese oxides are reduced. Through triangular fuzzy numbers, a health risk assessment was conducted to evaluate the hazard caused by high arsenic groundwater to humans. Results suggest that the highest carcinogenic risk values of arsenic for children, men, and women are 3.9 × 10-3, 2.38 × 10-3, and 2.35 × 10-3, respectively that greatly exceeds the acceptable risk value. The findings of this paper provide useful insight into the occurrence mechanism of arsenic in those areas with high arsenic groundwater and the potential health risk to humans.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Criança , China/epidemiologia , Monitoramento Ambiental , Feminino , Água Subterrânea/química , Humanos , Masculino , Manganês/análise , Medição de Risco , Poluentes Químicos da Água/análise
8.
Ecotoxicol Environ Saf ; 248: 114278, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379071

RESUMO

Groundwater is a very important natural resource for humanity, however, the degradation of groundwater quality caused by anthropogenic activities may pose a serious hazard to human health and ecosystem. In this study, 143 groundwater samples were analyzed to investigate the spatiotemporal variations of hydrochemistry, groundwater quality and potential human health risk of groundwater in Jinghe River Basin, Chinese Loess Plateau. Based on the mean concentrations value (MCV) and over-standard rate (OSR), the groundwater in Jinghe River Basin were divided into three groups: Group Ⅰ (high MCV: greater than standard values and high OSR: ≥ 10 %) contains TDS (total dissolved solids), TH (total harness), SO42-, F- and Fe; Group Ⅱ (low MCV and high OSR) contains pH, Cl-, NO3-, Cr6+ and As, Group Ⅲ (low MCV and low OSR) contains NO2-, NH4+, Zn, Mn, Pb, I- and Cd. The results of set pair assessment indicated that the unsuitable and doubtful class of comprehensive groundwater quality are mainly distributed in the northern part of study area, accounting for 29 % and 13.6 % of the area in 2004 and 2015, respectively. Human health risk assessment based on the triangular fuzzy number suggested that the variation of risk levels in different age groups is Children > Adult Men > Adult Women. Average carcinogenic risks of As in groundwater for the three groups exceed the acceptable level, and non-carcinogenic risk of NO3- for Children is higher than the acceptable threshold. The findings of this study provide valuable insight into the spatiotemporal characteristics of groundwater quality and potential health risks of polluted groundwater by anthropogenic activities.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Feminino , Humanos , Rios , Qualidade da Água , Ecossistema , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco , China
9.
Ecotoxicol Environ Saf ; 247: 114262, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327786

RESUMO

Volatile chlorinated hydrocarbons (VCHs) contaminated groundwater has a low indigenous microorganism population, and lack of nutrient substrates involved in degradation reactions, resulting in a weak natural remediation ability of groundwater ecosystems. In this study, based on the principle of degradation of VCHs by indigenous microorganisms in groundwater, and combined with biostimulation and controlled-release technology, we developed a starch-based encapsulated targeted bionutrient (YH-1) with easy uptake, good stability, controllable slow-release migration, and long timeliness for the remediation of groundwater contaminated by VCHs by indigenous microorganisms. The results showed that YH-1 is easily absorbed by microorganisms and can rapidly initiate itself to stimulate the microbial degradation of VCHs, and the degradation rate of various VCH components within 7 days was 82.38-92.38 %. The release rate of nutrient components in YH-1 increases with increasing VCH concentrations in groundwater; this could effectively prolong the action time of nutrient components, while also improving the degradation efficiency of pollutants with a sustained effect of more than 15 days. Simultaneously, owing to the fluidity, water solubility, and biodegradability of YH-1 in lithologic media, YH-1 injection did not cause blockage of the lithologic media in the aquifer. Through YH-1 stimulation, indigenous microorganisms grew rapidly in the underground environment, the diversity of microbial communities and the total number of species increased, and the correlation between genera strengthened. Simultaneously, YH-1 improved the ability of microbial community to convert inorganic electron donors/acceptors, thereby strengthening the co-metabolic mechanism between microorganisms. Additionally, there was a significant increase in the percentage of many microorganisms (e.g., Sphingomonas, Janthinobacterium, Duganella, etc.) that mediated the reductive dechlorination process and were redox inorganic electron donors/acceptors. This was conducive to the reductive dechlorination process of VCHs and achieved the efficient degradation of VCHs.


Assuntos
Antineoplásicos , Água Subterrânea , Hidrocarbonetos Clorados , Microbiota , Amido , Preparações de Ação Retardada , Nutrientes , Oxidantes
10.
Inorg Chem ; 60(19): 14978-14987, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34555892

RESUMO

Adjusting the local coordination environment of lanthanide luminescent ions is a useful method to manipulate the relevant photoluminescence (PL) property. K3Lu(PO4)2 is a phase-change material, and according to the stable temperature range from low to high, the related polymorphs are phase I [P21/m, coordination number (CN) of Lu3+ = 7], phase II (P21/m, CN = 6), and phase III (P3̅, CN = 6), respectively. Based on the temperature-dependent PL analysis of K3Lu(PO4)2:Pr3+, we find that Pr3+ ions occupy the noninversion sites (Cs) in the two low-temperature phases but preferentially enter into the inversion ones (C3i) in phase III. Compared to Pr3+-doped phase I (78 K), Pr3+ ions in phase III (300 K) manifest a weaker fluorescence intensity (170-fold lower). To enhance the room-temperature PL property of K3Lu(PO4)2:Pr3+, a polymorphous adjustment strategy was proposed by the use of the ion-doping method. By introducing the Gd3+ ions into the lattice, Pr3+-doped phase I is successfully stabilized to room temperature, manifesting a 27-fold fluorescence increase in comparison to K3Lu(PO4)2:Pr3+ (0.1 at. %). The finding discussed in this study highlights the significance of site engineering for luminescent ions and also presents the application value of phase-change hosts in the development of high-performance luminescent materials.

11.
Environ Res ; 200: 111449, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116017

RESUMO

Yinchuan Plain is a typically intensive cultivated region in the northwest of China. The irrigation return infiltration from Yellow River is the main source of groundwater recharge. Deep soil layers, sandy vadose zones, and dense irrigation canals make the groundwater susceptible to the return flow which contains pollutants originating mainly from agriculture applications, particularly from the extensive use of nitrogen fertilizer and manure. The pollution levels of phreatic water and confined water in NWS areas (non-water source areas) and WS areas (water source areas) of Yinchuan Plain in 2004 and 2014 were evaluated by the single-factor evaluation method, fuzzy comprehensive evaluation method, and average benchmark coefficient method, respectively. Piper trilinear diagram and scatter plots of major ions were used to classify water types and chemical facies, and further analyze the causes of groundwater pollution and the variation tendency of agricultural pollution. The results show that in 2014, about 50% of the groundwater samples were heavily polluted in Yinchuan Plain, the pollution level of phreatic water and confined water in NWS areas was up to level 5. And the groundwater within the standard in 2004 was heavily polluted in 2014 in WS areas, three-nitrogen pollution was the most serious pollutant, and the organic pollution level was grade IV. From the scatter plots of ions, it can be seen that the increase in concentrations of major ions was affected by evaporation-condensation and cation exchange reaction, but the complex ion contents indicated that groundwater was affected by human activities. The intensive agricultural activities, such as over fertilization, artificial irrigation, have led to concentrations increase of some chemical composition in groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , China , Monitoramento Ambiental , Humanos , Nitratos/análise , Poluentes Químicos da Água/análise
12.
Arch Environ Contam Toxicol ; 80(1): 92-106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33388838

RESUMO

Groundwater is the main sources of water supply for drinking purposes in the Ordos Basin in the northwestern part of China. In order to sustain and protect the quality of groundwater resources, shallow groundwater samples were collected and analyzed to identify the hydrogeochemical characteristics, and to evaluate health risk to human. Cluster analysis showed that the 134 groundwater samples were divided into three classes (i.e., class 1, class 2, class 3). The groundwater types are mostly characterized by SO4-Cl type and SO4 type, mixed HCO3 type. The primary natural mechanisms controlling the chemical compositions are water-rock interaction and evaporation-precipitation. The extremely high concentrations of sulfate could be caused by contamination from pyrite or from infiltration of sulfate from inorganic fertilizers or from wastewater discharges. Results of the assessment of the health risks for ingestion of Cl-, NO3-, F-, Cr, and As in drinking water indicated that the total health risks are beyond the US EPA acceptable level of 10-6 per year for consumption of groundwater sourced from all three cluster classes. The highest risks were for ingestion of arsenic and chromium in groundwater. The highest total risks to adults and children were 1.51 × 10-5 and 2.45 × 10-2 (class 1), 4.12 × 10-4 and 8.98 × 10-3 (class 2), 3.06 × 10-3 and 5.49 × 10-2 (class 3), respectively. The study showed that there is a high risk of health problems among the residents of the Ordos Basin in China that are ingesting contaminated drinking water, with the health risks to children higher than the risks to adults.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea , Poluentes Químicos da Água/agonistas , Abastecimento de Água/métodos , Adulto , Arsênio/análise , Criança , China , Fertilizantes , Água Subterrânea/química , Água Subterrânea/normas , Humanos , Medição de Risco , Sulfatos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/normas
13.
Environ Geochem Health ; 43(2): 717-732, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900825

RESUMO

The safety of groundwater has been a great concern for irrigation and drinking purposes in recent decades due to the increasing impacts of anthropogenic activities. There are several standards to evaluate the groundwater quality for different utilization purposes. In this paper, 804 samples covering the entire Ordos Basin across five provinces were used to evaluate the irrigation suitability and human health risks. The results showed that the sequence of cationic concentration was Na+ > Ca2+ > Mg2+ > K+ > NH4 +, and the anion concentration was HCO3 - > SO4 2- > Cl- > NO3 - > F- > NO2 -. For drinking purposes, TDS, Na+, SO4 2-, F-, TH and NO3 - exceed seriously the regulated standard in the study area. For irrigating purposes, 80% of the water in the study area belongs to "good water" according to the evaluation of salinity and alkalinity. Saline water which is not suitable for irrigation accounts for about 9%. High health risks of fluoride ions are mainly observed to the samples representing the western part of the study area, while the health risks of nitrates spread throughout the study area. Health risk is not only related to location, but also varies with age, and it is found that children suffer more threats than adults.


Assuntos
Agricultura , Água Subterrânea/química , Poluentes Químicos da Água/toxicidade , Adulto , Criança , China , Monitoramento Ambiental/métodos , Fluoretos/análise , Humanos , Nitratos/análise , Medição de Risco , Salinidade , Poluentes Químicos da Água/análise , Qualidade da Água/normas
14.
Environ Geochem Health ; 43(2): 663-682, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31741219

RESUMO

As a key part of Bohai New Area development, Haixing County has been undergoing rapid development. In order to estimate potential risks of chemical parameters to human health of local residents, carcinogenic and non-carcinogenic risks via direct ingestion of drinking water were calculated using human health risk assessment (HHRS) based on triangular fuzzy number. The levels of pH, total dissolved solids, total harness, SO4 2-, Na+, Cl-, SO4 2-, F-, Fe (total iron), NO3 -, and NO2 - were more or less higher than the permissible limits except parameters As and Mn. The analysis results show that risk level for different crowds in the study area demonstrated an obvious variation, generally in the order of infants > children > adult males > adult females for non-carcinogenic risk values (R n), while the sequence of the carcinogenic risk values (R c) are adult males > adult females > children > infants. When the confidence level was 0.8, the non-carcinogenic risk values (R n) through drinking water intake were higher than 1, and this implied that potential health impacts on human health for local residents. However, the risks of carcinogenic risk values (R c) were lower than 1.0E-4, demonstrating minimal and acceptable health risk. Furthermore, according to the middle values (α = 1) of R n, the total non-carcinogenic risks for local residents were obtained in the following order: GW (Gaowan Town) > XJ (Xinji-Xiangfang County) > ZM (Zhaomaotao County) > HX (Haixing-Suji Town) > ZH (Zhanghuiting County) > XS (Xiaoshan County), and ZM > XJ > GW > HX > XS > ZH for R c. It was also found that the spatial distribution of fluoride level in drinking water is urgently needed to be identified. In conclusion, the potential health risks to residents should cause enough attention both from society and the academic community.


Assuntos
Agricultura , Água Potável/química , Monitoramento Ambiental/métodos , Água Subterrânea/química , Medição de Risco , Poluentes Químicos da Água/toxicidade , Adulto , Criança , China , Feminino , Humanos , Masculino
15.
Ecotoxicol Environ Saf ; 174: 649-657, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875558

RESUMO

Datong basin is one of the most important agriculture zone of Shanxi Province, China, where intensive fertilizer and pesticide applications cause the groundwater contamination. Hence, it is necessary to carry out groundwater specific vulnerability assessment of nitrate. The prediction accuracy of conventional DRASTIC model for groundwater vulnerability assessment is severely limited by the inherent subjectivity in determining main parameters, rating scales and weighting coefficients. This paper attempts to overcome these problems by changing the evaluation parameters, parameters rating and weight calculation method. Based on the hydrogeological conditions and nitrate pollution characteristics of Datong Basin, the traditional groundwater vulnerability model DRASTIC was improved, called DRSTIC-LE model to assess the specific vulnerability of nitrate, which involves Depth of water table (D), Net recharge (R), Soil media (S), Topography (T), Impact of the vadose zone (I), hydraulic Conductivity (C), land use type (L), and groundwater exploitation (E) as evaluation parameters. And the theoretical weight of each parameter were determined with the aid of the improved weights determination method by the effective combination of the entropy weight method and analytic hierarchy process. Moreover, single-parameter sensitivity analysis was performed to evaluate the effect of each parameter on the groundwater specific vulnerability. According to the results of groundwater specific vulnerability map, very high and high vulnerability mainly situated in central, northern and northeastern portion of study area, with 6.25%, 17.93% of total area, respectively. Also, single-parameter sensitivity analysis represented that I and D are the main parameter which impacts groundwater to pollution while C contributes least to pollution in the Datong basin. The model is validated with the measured nitrate concentration and results have shown better correlation between SVI and nitrate concentration. Additionally, by comparing the correlation between the effective weights and the theoretical weights calculated by the three methods (EW, AHP and EW-AHP method), we can see that prediction accuracy of the EW-AHP method is higher than other methods. The research established the efficacy of EW-AHP method as a method of determining weights and provided a basis for regional control of groundwater nitrate pollution.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Modelos Teóricos , Nitrocompostos/análise , Poluentes Químicos da Água/análise , Agricultura , China , Hidrologia , Solo/química
16.
Ecotoxicol Environ Saf ; 164: 732-738, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30176562

RESUMO

Groundwater quality relating closely to human health has become a great concern to the whole society, especially in heavily polluted areas. Yinchuan Plain, located in the arid and semi-arid region of Northwestern China, where people rely heavily on groundwater resource. However, due to the improper groundwater exploitation and negative effect of human activities in recent years, groundwater quality in Yinchuan plain become deteriorated. For the sustainable utilization and protection of groundwater resources, health risk assessment (HRA) of phreatic water is conducted in this paper. On the basis of model recommended by EPA, triangular fuzzy number is applied to establish risk assessment model for health risk assessment of adults and children in wet and dry seasons, respectively. Results of HRA indicate that carcinogenic risk of arsenic is highest among the risk from components in phreatic water, and the highest risk from arsenic to adults and children in wet and dry season are 6.48 × 10-6a-1 and 9.56 × 10-6a-1, 1.08 × 10-5a-1 and 1.59 × 10-5a-1, respectively. This study also states that in Yinchuan Plain carcinogenic risk from drinking groundwater can be 3-4 times magnitude higher than the noncarcinogenic risk. Also it is found that the health risk to children is as 1.5-2 times as to adults, while the uncertainties of adults' health risk are higher than that of children.


Assuntos
Água Potável/química , Água Subterrânea/química , Medição de Risco , Adulto , Arsênio/análise , Criança , China , Monitoramento Ambiental , Inundações , Humanos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Controle de Qualidade , Estações do Ano , Testes de Toxicidade , Poluentes Químicos da Água/análise
17.
Environ Sci Pollut Res Int ; 30(5): 13660-13670, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136183

RESUMO

Nitrate pollution of groundwater has become a global concern as it can affect drinking water quality and human health. In this paper, an extensive hydrochemical investigation was performed to assess the spatial distribution, source identification, and health risk of groundwater nitrate pollution in the Subei Lake basin. The prevalent pollutant, nitrate (NO3-), was identified based on descriptive statistical method and box plots, and most of the other parameters of groundwater samples met water standards and can be used for drinking purpose. The results showed that nearly 23.53% of groundwater samples displays the NO3- concentrations higher than the limit of 50 mg/L recommended by the World Health Organization, and the highest nitrate content (199 mg/L) is mainly distributed around the Mukai Lake. Piper triangle diagram demonstrated that the dominated anions of hydrochemical types exhibit a gradual evolving trend from HCO3- to SO42- and Cl- with increasing nitrate concentration. The correspondence analysis suggested that agricultural activities are identified as the most possible source of nitrate contamination, while the higher content of other parameters in individual groundwater samples may be controlled by natural factors. The impacts of pollutant NO3- on human health were quantified using human health risk assessment method, and results showed that the order of non-carcinogenic health risk values through drinking water intake is Infants>Children>Adult males>Adult females, and 65%, 53%, 41%, and 35% of samples exceed the acceptable risk level (hazard quotient=1), respectively. The main findings obtained from this study can provide valuable insight on drinking water safety and groundwater pollution prevention.


Assuntos
Água Potável , Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Masculino , Adulto , Criança , Lactente , Feminino , Humanos , Nitratos/análise , Monitoramento Ambiental/métodos , Lagos/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Qualidade da Água , Poluentes Ambientais/análise
18.
J Hazard Mater ; 453: 131440, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086667

RESUMO

Soil physiochemical properties play a vital role in bioaccessibility-based health risk assessment as it can determine the bioaccessibility and the true risk of potentially toxic elements in soil. However, the effects of soil properties on bioaccessibility still remains unclear. In this paper, 17 of the 1454 literatures with 474 samples were identified, screened and reviewed for exploring the correlation between soil physicochemical properties and lead bioaccessibility (BAcPb) through a meta-analysis approach. Five soil physicochemical parameters including pH, SOM, Clay, CEC and T-Pb were systematically analyzed using Principal component analysis, Pearson correlation analysis and survival analysis. The results showed that pH of simulated gastric juice is a major source of heterogeneity of the correlation between soil pH and BAcPb. In the gastric phase, the effect of alkaline soil on high BAcPb (BAc >50%) is more sensitive, and the effect of acidic soil on low BAcPb (BAc <50%) is more sensitive. However, in the small intestinal phase, soil pH displays little impacts on BAcPb in acidic, alkaline and neutral soils. Although three principal components explained 66.2% and 64.9% of the total variance of the urban, agricultural, and mining soils in gastric and small intestinal phases, respectively, there was no strong evidence that soil type can influence the BAcPb. The results of present study provide insights into the correlation between soil properties and BAcPb, and prediction of the bioaccessibility and bioavailability of Pb in different types of soil.


Assuntos
Poluentes do Solo , Solo , Solo/química , Chumbo/análise , Poluentes do Solo/análise , Agricultura , Mineração , Disponibilidade Biológica
19.
Sci Total Environ ; 854: 158767, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113806

RESUMO

Antimony (Sb) contamination in soil has become a major environmental issue due to its adverse effects on ecosystems and human health. In this paper, 1255 soil samples were analyzed to investigate the distribution, speciation, in vitro oral bioaccessibility (8 soil samples) and human health risk of Sb in contaminated soils and its impacts on groundwater. The results showed that 4.38 % of the soil samples within the depth of 0-31 m exceeded the Risk Screening Values (RSV). Sb mainly existed in the residual fraction (38.05 % ∼ 94.22 %), Fe/Mn oxides (0.01 % ∼ 31.80 %) and the organic fraction (0.32 % ∼ 21.55 %) with poor mobility. The bioaccessibility of Sb was approximately <31 %. The total concentration of Sb (TSb) in soil was the dominant factor influencing the bioaccessible concentration of Sb (SbBio). Soil physiochemical properties such as Fe, Mn, and organic matter content (OM) also affected the magnitude of SbBio. Health risk assessment based on in vitro bioaccessibility suggested that the hazard quotient (HQ) of adults was within the acceptable level (HQ < 1) for industrial scenario, while the HQ of children and adults was greater than the acceptable level (HQ ≥ 1) for residential scenario, with a higher risk to children than adults. The results of the leaching experiment involving Dilution-Attenuation Factor (DAF) model suggested that the predicted maximum concentration of Sb in groundwater was 2.40 µg/L that is lower than the acceptable standard value (5 µg/L), implying that groundwater was not contaminated by Sb in soil. The findings of this study provide some insights into the speciation, in vitro bioaccessibility and health risk of toxic trace metals in contaminated soils and the potential environmental impacts.


Assuntos
Poluentes do Solo , Oligoelementos , Criança , Humanos , Antimônio/análise , Solo/química , Ecossistema , Poluição Ambiental , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Medição de Risco
20.
Environ Pollut ; 323: 121271, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804139

RESUMO

Soil contamination of heavy metals (HMs) caused by the long-term industrial activities has become a major environmental issue due to its adverse effects on human health and ecosystem. In this paper, 50 soil samples were analyzed to evaluate the contamination characteristics, source apportionment and source-oriented health risk of HMs in soils near an old industrial area in NE China by applying an integrated approach of Pearson correlation analysis, Positive matrix factorization (PMF) model and Monte Carlo simulation. The results showed that the mean concentrations of all HMs greatly exceeded the soil background values (SBV), and the surface soils in the study area were heavily polluted with HMs, displaying a very high ecological risk. The toxic HMs emitted from the bullet production were identified as the primary source of HMs contamination in soils, with a contribution rate of 33.3%. The human health risk assessment (HHRA) suggested that the Hazard quotient (HQ) values of all HMs for children and adults are within the acceptable risk level (HQ < 1). The carcinogenic risk (CR) values of HMs for children and adults significantly exceeded the acceptable threshold of 1E-6 with a basic trend: As > Pb > Cr > Co > Ni, indicating a high cancer risk. For source-oriented health risk, the CR of four pollution sources for children and adults shows a same trend: Factor 4 > Factor 3 > Factor 2 > Factor 1. Among those, the source of HMs pollution from bullet production is the largest contributor to cancer risk, and As and Pb are the most important HMs pollutants that cause cancer risk to humans. The present study sheds some light on the contamination characteristics, source apportionment and source-health risk assessment of HMs in industrially contaminated soils, which helps improve the management of environmental risk control, prevention and remediation.


Assuntos
Metais Pesados , Neoplasias , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Monitoramento Ambiental , Ecossistema , Chumbo/análise , Poluentes do Solo/análise , China , Metais Pesados/análise , Medição de Risco , Carcinógenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA