Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 25(44): 445401, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25313162

RESUMO

Graphene/hexagonal boron nitride (h-BN) heterostructure has showed great potential to improve the performance of a graphene device. A graphene on an h-BN substrate may buckle due to the thermal expansion mismatch between the graphene and h-BN. We used an energy method to investigate the periodic buckling patterns including one-dimensional, square checkerboard, hexagonal, equilateral triangular and herringbone mode in a graphene/h-BN heterostructure under equi-biaxial compression. The total energy, consisting of cohesive energy, graphene membrane energy and graphene bending energy, for each buckling pattern is obtained analytically. At a compression slightly larger than the critical strain, all buckling patterns have the same total energies, which suggests that any buckling pattern may occur. At a compression much larger than the critical strain, the herringbone mode has the lowest total energy by significantly reducing the membrane energy of graphene at the expense of a slight increase of the bending energy of graphene and cohesive energy. These results may serve as guidelines for strain engineering in graphene/h-BN heterostructures.

2.
Appl Opt ; 47(20): 3658-68, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18617983

RESUMO

A finite-element model (FEM) is employed to study the pressure response of deformable elastic membranes used as tunable optical elements. The model is capable of determining in situ both the modulus and the prestrain from a measurement of peak deflection versus pressure. Given accurate values for modulus and prestrain, it is shown that the two parameters of a standard optical shape function (radius of curvature and conic constant) can be accurately predicted. The effects of prestrain in polydimethylsiloxane (PDMS) membranes are investigated in detail. It was found that prestrain reduces the sensitivity of the membrane shape to the details of the edge clamping. It also reduces the variation of the conic constant with changes in curvature. Thus the ability to control the prestrain as well as thickness and modulus is important to developing robust optical designs based on fluid-driven polymer lenses.

3.
Science ; 314(5802): 1102-7, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17110566

RESUMO

The difficult challenge of simulating diffuse and complex fracture patterns in tough structural composites is at last beginning to yield to conceptual and computational advances in fracture modeling. Contributing successes include the refinement of cohesive models of fracture and the formulation of hybrid stress-strain and traction-displacement models that combine continuum (spatially averaged) and discrete damage representations in a single calculation. Emerging hierarchical formulations add the potential of tracing the damage mechanisms down through all scales to the atomic. As the models near the fidelity required for their use as virtual experiments, opportunities arise for reducing the number of costly tests needed to certify safety and extending the design space to include material configurations that are too complex to certify by purely empirical methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA