Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 357: 114592, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043324

RESUMO

Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt's voles. Male Brandt's voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt's voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt's voles while acting as an antioxidant and anti-inflammatory agent.

2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972423

RESUMO

GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Insulina/imunologia , Intestinos/imunologia , Receptores de GABA-A/imunologia , Sinapses/imunologia , Adulto , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Neurônios GABAérgicos/imunologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Insulina/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Mutação , Junção Neuromuscular/imunologia , Junção Neuromuscular/microbiologia , Junção Neuromuscular/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/fisiologia , Transdução de Sinais/imunologia , Sinapses/microbiologia , Sinapses/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia , Transmissão Sináptica/fisiologia
3.
J Assist Reprod Genet ; 41(5): 1433-1447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456992

RESUMO

OBJECTIVE: The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition. METHODS: We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers. RESULTS: Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement. CONCLUSIONS: This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.


Assuntos
Biomarcadores , Endometriose , Aprendizado de Máquina , Nomogramas , Humanos , Endometriose/genética , Endometriose/diagnóstico , Endometriose/patologia , Feminino , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Estudos Retrospectivos , Separação de Fases
4.
Biochem Biophys Res Commun ; 686: 149177, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953105

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is characterized by a lack of response to insulin in pregnancies, and often accompanied by severe complications. GDM is associated with structural and functional alterations, particularly endothelial dysfunction, in various tissues. This study is aimed to investigate the effect of placental mesenchymal stem cells (MSCs) on the endothelial biological function of human umbilical vein endothelial cells (HUVECs) and their molecular mechanisms. METHODS: Villi mesenchymal stem cells (VMSCs) were co-cultured with HUVECs, and transcriptomic analysis of differential genes was performed in HUVECs under high-glucose induction. Lentiviral transfection was performed to construct HUVECs with stable knockdown or overexpression of SPOCD1. The immunohistochemical assays were used to detect the expression of SPOCD1 in GDM patients. TUNEL fluorescence staining was applied for detection of the HUVEC apoptosis. ß galactosidase staining assay was performed to detect the cell senescence. Electron microscopy was used to detect the cell pyroptosis. qRT-PCR and western blot assays were conducted for identifying the mRNA & protein expressions of genes. RESULTS: VMSCs, when co-cultured with HUVECs, could inhibit the apoptosis, pyroptosis and senescence induced by high-glucose condition in HUVECs. Transcriptomic results showed an upregulation of SPOCD1 expression induced by VMSCs in HUVECs. Overexpression of SPOCD1 inhibited high-level glucose-induced apoptosis, pyroptosis and senescence in HUVECs via the ß-catenin pathway. CONCLUSION: VMSCs induce ß-catenin activation by upregulating the expression of SPOCD1 in HUVECs, which ultimately inhibits high-level glucose-induced apoptosis, pyroptosis and senescence in HUVECs. This observation provides potential therapeutic insight for future GDM treatment.


Assuntos
Diabetes Gestacional , Humanos , Feminino , Gravidez , Células Endoteliais da Veia Umbilical Humana/metabolismo , Diabetes Gestacional/metabolismo , beta Catenina/metabolismo , Transdução de Sinais , Placenta/metabolismo , Glucose/metabolismo
5.
Neuroendocrinology ; 113(5): 519-534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36502806

RESUMO

INTRODUCTION: Stress during adolescence causes long-term behavioral changes in adulthood. We previously found that adolescent exposure to predatory risk augments adolescent social contact and adult parental behavior in Brandt's voles (Lasiopodomys brandtii). METHODS: Here, we determined whether this experience alters sexual behavior, pair-bond formation, and recognition ability as well as basal HPA axis activity, central oxytocin (OT), and arginine-vasopressin (AVP) expression in adulthood. RESULTS: In the social interaction test, repeated cat odor (CO) exposure enhanced the frequency of lordosis by female voles toward an unfamiliar opposite-sex conspecific. CO voles preferred to engage with their partners after 48-h cohabitation whereas the control groups did not, which may reflect stable pair bonds in the CO treatment group. Furthermore, adolescent exposure to CO inhibited novel object recognition and place recognition ability, while it influenced social recognition only among adult males. No effect of adolescent CO exposure was observed for basal HPA axis activity, showing a habituation effect. Finally, we found that CO exposure increased OT and decreased AVP expression in the hypothalamus, including the paraventricular nucleus and anterior hypothalamus. The levels of OT in the medial amygdala were lower, and AVP in the lateral septum was higher in CO voles compared with the control. CONCLUSION: These findings demonstrate that adolescent exposure to predator risk promotes adult reproductive behavior of Brandt's voles. Deficits in recognition ability may necessitate alterations in reproductive strategies to enhance inclusive fitness. OT and AVP systems may play a modulatory role in the alteration of social behaviors elicited by adolescent predatory risk.


Assuntos
Sistema Hipotálamo-Hipofisário , Ocitocina , Masculino , Animais , Feminino , Ocitocina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal , Arvicolinae/metabolismo , Comportamento Social , Arginina Vasopressina/metabolismo , Cognição
6.
Int Arch Occup Environ Health ; 96(7): 1009-1014, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269342

RESUMO

OBJECTIVE: To explore the frequency and effect of extreme temperature on the non-accidental death rate in Hulunbuir, a Chinese ice city. METHODS: From 2014 to 2018, mortality data of residents residing in Hulunbuir City were collected. The lag and cumulative effects of extreme temperature conditions on non-accidental death and respiratory and circulatory diseases were analyzed by distributed lag non-linear models (DLNM). RESULTS: The risk of death was the highest during high-temperature conditions, the RR value was 1.111 (95% CI 1.031 ~ 1.198). The effect was severe and acute. The risk of death during extreme low-temperature conditions peaked on the fifth day, (RR 1.057; 95% CI 1.012 ~ 1.112), then decreased and was maintained for 12 days. The cumulative RR value was 1.289 (95% CI 1.045 ~ 1.589). Heat significantly influenced the incidence of non-accidental death in both men (RR 1.187; 95% CI 1.059-1.331) and women (RR 1.252; 95% CI 1.085-1.445). CONCLUSIONS: Regardless of the temperature effect, the risk of death in the elderly group (≥ 65 years) was significantly higher than that of the young group (0-64 years). High-temperature and low-temperature conditions can contribute to the increased number of deaths in Hulunbei. While high-temperature has an acute effect, low-temperature has a lagging effect. Elderly and women, as well as people with circulatory diseases, are more sensitive to extreme temperatures.


Assuntos
Doenças Cardiovasculares , Dinâmica não Linear , Masculino , Humanos , Feminino , Idoso , Temperatura , Estudos Longitudinais , Temperatura Baixa , Temperatura Alta , China/epidemiologia
7.
Ecotoxicol Environ Saf ; 252: 114619, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753967

RESUMO

The development of agriculture and industry has led to a gradual increase in the levels of cadmium (Cd) in the soil, which, due to its high mobility in soil, makes Cd deposition in plants a serious threat to the health of animals and humans. The important role of melatonin (MT) in regulating plant growth and adaptation to environmental stress has become a pertinent research topic, but the mechanisms of action of MT in Cd-stressed Platycladus orientalis seedlings are unclear. Here, we investigated the mitigation mechanism of exogenous MT application on P. orientalis seedlings under Cd stress. Cd stress significantly inhibited the growth of P. orientalis seedlings by disrupting photosynthetic pigments, mineral balance, osmotic balance, and oxidative balance. In contrast, the application of exogenous MT significantly increased the growth parameters of P. orientalis seedlings, reduced Cd accumulation and transfer in the seedlings, increased the content of iron, manganese, zinc, copper, chlorophyll, soluble protein, soluble sugar, and proline, reduced the content of glutathione, increased the activities of superoxide dismutase and peroxidase, and significantly enhanced the expression of antioxidant-related genes (POD, GST, and APX). It also effectively reduced the content of hydrogen peroxide and malondialdehyde to inhibit the production of reactive oxygen species, thus alleviating Cd-induced oxidative stress. In addition, MT significantly upregulated the expression of the ethanol dehydrogenase (ADH) gene, which is effective in removing the acetaldehyde produced by anaerobic respiration in seedlings under stress, thereby reducing the toxic effects on P. orientalis. The results showed that exogenous MT enhanced the tolerance of P. orientalis seedlings to Cd stress by regulating photosynthesis, mineral balance, osmotic balance, and the antioxidant system and that the optimal concentration of MT was 200 µmol·L-1.


Assuntos
Antioxidantes , Melatonina , Humanos , Antioxidantes/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Cádmio/metabolismo , Plântula , Estresse Oxidativo , Minerais/metabolismo , Nutrientes , Solo , Peróxido de Hidrogênio/metabolismo
8.
Reprod Domest Anim ; 58(11): 1497-1511, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37697713

RESUMO

Inappropriate management practices of domestic animals during pregnancy can be potential stressors, resulting in complex behavioural, physiological and neurological consequences in the developing offspring. Some of these consequences can last into adulthood or propagate to subsequent generations. We systematically summarized the results of different experimental patterns using artificially increased maternal glucocorticoid levels or prenatal maternal physiological stress paradigms, mediators between prenatal maternal stress (PMS) and programming effects in the offspring and the effects of PMS on offspring phenotypes in sheep. PMS can impair birthweight, regulate the development of the hypothalamic-pituitary-adrenal axis, modify behavioural patterns and cognitive abilities and alter gene expression and brain morphology in offspring. Further research should focus on the effects of programming on gene expression, immune function, gut microbiome, sex-specific effects and maternal behaviour of offspring, especially comparative studies of gestational periods when PMS is applied, continual studies of programming effects on offspring and treatment strategies that effectively reverse the detrimental programming effects of prenatal stress.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Doenças dos Ovinos , Gravidez , Masculino , Feminino , Animais , Ovinos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Peso ao Nascer , Efeitos Tardios da Exposição Pré-Natal/veterinária , Efeitos Tardios da Exposição Pré-Natal/metabolismo
9.
Molecules ; 27(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080458

RESUMO

Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN), extracted from Mycobacterium bovis, is an immunoregulatory medicine commonly used in clinic. However, the structural characteristics and potential pharmacological efficacy of the polysaccharides from BCG-PSN remain unclear. Herein, two polysaccharides (BCG-1 and BCG-2) were purified and their structures were characterized. Monosaccharide composition analysis combined with methylation analysis and NMR data indicated that BCG-1 and BCG-2 were an α-D-(1→4)-mannan with (1→2)-linked branches, and an α-D-(1→4)-glucan with (1→6)-linked branches, respectively. Herein, the mannan from BCG-PSN was first reported. Bioactivity assays showed that BCG-1 and BCG-2 dose-dependently and potently increased the production of inflammatory mediators (NO, TNF-α, IL-6, IL-1ß, and IL-10), as well as their mRNA expressions in RAW264.7 cells; both have similar or stronger effects compared with BCG-PSN injection. These data suggest that BCG-1 and BCG-2 are very likely the active ingredients of BCG-PSN.


Assuntos
Mycobacterium bovis , Adjuvantes Imunológicos , Vacina BCG , Mananas/farmacologia , Mycobacterium bovis/química , Polissacarídeos/farmacologia
10.
An Acad Bras Cienc ; 91(3): e20180646, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411259

RESUMO

The hepatoprotective effects of the ethanolic extracts of propolis (EEP) on alcohol-induced liver steatosis were investigated in Wistar rats. Chronic alcoholic fatty liver was induced by administration of 52% alcohol to male Wistar rats at the dose of 1% body weight for 7 weeks. Then animals were simultaneously treated with 50% ethanol solutions of EEP or normal saline at the dose of 0.1% body weight for 4 further weeks. Serological analyses and liver histopathology studies were performed to investigate the development of steatosis. Microarray analysis was conducted to investigate the alterations of hepatic gene expression profiling. Our results showed that 4-week treatment of EEP helped to restore the levels of various blood indices, liver function enzymes and the histopathology of liver tissue to normal levels. Results from the microarray analysis revealed that the hepatic expressions of genes involved in lipogenesis were significantly down-regulated by EEP treatment, while the transcriptional expressions of functional genes participating in fatty acids oxidation were markedly increased. The ability of EEP to reduce the negative effects of alcohol on liver makes propolis a potential natural product for the alternative treatment of alcoholic fatty liver.


Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Hepatopatias Alcoólicas/metabolismo , Extratos Vegetais/metabolismo , Própole/metabolismo , Substâncias Protetoras/metabolismo , Alanina Transaminase/metabolismo , Animais , Apiterapia/métodos , Aspartato Aminotransferases/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Etanol , Ácidos Graxos/biossíntese , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Oxirredução , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Própole/química , Própole/uso terapêutico , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Ratos Wistar , Análise Serial de Tecidos/métodos , Transcrição Gênica/genética , Triglicerídeos/metabolismo
11.
Part Fibre Toxicol ; 15(1): 5, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343276

RESUMO

BACKGROUND: Nanoparticles (NPs) administered orally will meet the gut microbiota, but their impacts on microbiota homeostasis and the consequent physiological relevance remain largely unknown. Here, we describe the modulatory effects and the consequent pharmacological outputs of two orally administered fullerenols NPs (Fol1 C60(OH)7(O)8 and Fol113 C60(OH)11(O)6) on gut microbiota. RESULTS: Administration of Fol1 and Fol113 NPs for 4 weeks largely shifted the overall structure of gut microbiota in mice. The bacteria belonging to putative short-chain fatty acids (SCFAs)-producing genera were markedly increased by both NPs, especially Fol1. Dynamic analysis showed that major SCFAs-producers and key butyrate-producing gene were significantly enriched after treatment for 7-28 days. The fecal contents of SCFAs were consequently increased, which was accompanied by significant decreases of triglycerides and total cholesterol levels in the blood and liver, with Fol1 superior to Fol113. Under cultivation in vitro, fullerenols NPs can be degraded by gut flora and exhibited a similar capacity of inulin to promote SCFA-producing genera. The differential effects of Fol1 and Fol113 NPs on the microbiome may be attributable to their subtly varied surface structures. CONCLUSIONS: The two fullerenol NPs remarkably modulate the gut microbiota and selectively enrich SCFA-producing bacteria, which may be an important reason for their anti-hyperlipidemic effect in mice.


Assuntos
Fulerenos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Nanopartículas , Animais , Ácidos Graxos Voláteis/biossíntese , Fezes/microbiologia , Fulerenos/química , Fulerenos/farmacocinética , Microbioma Gastrointestinal/genética , Homeostase/efeitos dos fármacos , Hipolipemiantes/química , Hipolipemiantes/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Filogenia , RNA Ribossômico 16S/genética , Propriedades de Superfície , Distribuição Tecidual
12.
J Nanosci Nanotechnol ; 18(4): 2387-2393, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442907

RESUMO

The application of nano-products in the food industry increases the risk of people exposed to nanoparticles. Titanium dioxide nanoparticles (T-NPs) are typically and widely used in food field, while fullerenol nanoparticles (F-NPs) have great promise to be used as food additives. Therefore, it is necessary and important to understand the safety of T-NPs and F-NPs in foods. In the present study, Caco-2 gut epithelial cell line was selected as a model to investigate the impact of T-NPs and F-NPs. The viability and proliferation of Caco-2 gut epithelial cells incubated with different concentrations of T-NPs and F-NPs were observed. The results showed that the two kinds of nanoparticles did not induce cell death even lasting for 48 h. The results of apoptosis and DNA damages in the cells indicated that both T-NPs with 50 and 100 µg/mL caused Caco-2 gut epithelial cell apoptosis, but didn't cause significantly DNA damages. F-NPs with 200 and 500 µg/mL concentrations also can induce cell apoptosis but no DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Fulerenos/farmacologia , Nanopartículas Metálicas , Titânio/farmacologia , Células CACO-2 , Dano ao DNA , Células Epiteliais , Humanos , Mucosa Intestinal , Nanopartículas , Espécies Reativas de Oxigênio
14.
Naturwissenschaften ; 104(7-8): 64, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28689350

RESUMO

Prey species show specific adaptations that allow recognition, avoidance, and defense against predators. This study was undertaken to investigate the processing of a chronic, life-threatening stimulus to Norway rats (Rattus norvegicus). One hundred forty-four Norway rats were tested by repeated presentation of cat urine for 1 h at different days in a defensive withdrawal apparatus. Rats exposed to urine for short periods showed significantly larger defensive behavioral and medial hypothalamic c-fos messenger RNA (mRNA) responses than other groups. These defensive responses habituated shortly after the presentation of cat urine. Serum levels of adrenocorticotropic hormone and corticosterone increased significantly when animals were repeatedly exposed to cat urine. However, the hormonal responses took longer to habituate than the behavioral and molecular responses did. We conclude that the behavioral and c-fos mRNA responses are "primed" for habituation to repeated exposures to cat urine, while the hormonal responses show "resistance." The results support our hypothesis that the strongest anti-predator responses at three levels would occur during short-term exposure to cat urine and that these responses would subsequently disappear on prolonged exposure. This study assists understanding the way in which the different levels of defensive responses are integrated and react during chronic stress.


Assuntos
Comportamento Animal , Adaptação Fisiológica , Hormônio Adrenocorticotrópico , Animais , Gatos , Corticosterona , Proteínas Proto-Oncogênicas c-fos , RNA Mensageiro , Ratos
15.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674615

RESUMO

Rodents, including the striped field mouse (Apodemus agrarius), play vital roles in ecosystem functioning, with their gut microbiota contributing significantly to various ecological processes. Here, we investigated the structure and function of 94 wild A. agrarius individuals from 7 geographic populations (45°57' N, 126°48' E; 45°87' N, 126°37' E; 45°50' N, 125°31' E; 45°59' N, 124°37' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E), revealing two distinct enterotypes (Type1 and Type2) for the first time. Each enterotype showed unique microbial diversity, functions, and assembly processes. Firmicutes and Bacteroidetes dominated, with a significant presence of Lactobacillus and Muribaculaceae. Functional analysis highlighted metabolic differences, with Type1 emphasizing nutrient processing and Type2 showing higher energy production capacity. The analysis of the neutral model and the null model revealed a mix of stochastic (drift and homogenizing dispersal) and deterministic processes (homogenous selection) that shape the assembly of the microbiota, with subtle differences in the assembly processes between the two enterotypes. Correlation analysis showed that elevation and BMI were associated with the phylogenetic turnover of microbial communities, suggesting that variations in these factors may influence the composition and diversity of the gut microbiota in A. agrarius. Our study sheds light on gut microbial dynamics in wild A. agrarius populations, highlighting the importance of considering ecological and physiological factors in understanding host-microbiota interactions.

16.
Poult Sci ; 103(10): 104059, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39068696

RESUMO

Riemerella anatipestifer is a Gram-negative, rod-shaped bacterium that is flagellated, non-budded, and encapsulated, measuring approximately 0.4 µm × 0.7 µm. After infecting ducklings with R. anatipestifer, the hosts exhibited pathological changes, such as bacterial meningitis, fibrinous pericarditis, and fibrinous peripheral hepatitis. The pathogenesis of meningitis caused by R. anatipestifer has not yet been elucidated. To investigate the key molecules or proteins involved in R. anatipestifer's penetration of the blood-brain barrier (BBB) and the subsequent development of duck meningitis, a duck meningitis model was established and characterized. Duckling brain tissues were collected and analyzed using 4D label-free proteomic technology. Differentially expressed proteins were analyzed using a series of bioinformatics methods and verified using RT-qPCR and Western-Blot. The results showed that the differentially expressed proteins were primarily related to intracellular transport, transport protein activity, and transmembrane transport protein activity, and were mainly enriched in pathways associated with reducing intercellular connections and adhesion and increasing cell migration and apoptosis. Thus, it is suggested that R. anatipestifer may penetrate the BBB via transcellular and paracellular pathways, causing neurological diseases such as meningitis. This study is the first to analyze R. anatipestifer-infected duckling brain tissue using proteomics, thus providing a direction for further research into the mechanisms of R. anatipestifer's penetration of the BBB.

17.
Huan Jing Ke Xue ; 45(7): 4196-4205, 2024 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-39022966

RESUMO

Taking the typical yellow soil in Guizhou as the research object, four treatments were set up: no fertilization (CK), single application of chemical fertilizer (NP), 50% organic fertilizer instead of chemical nitrogen fertilizer [1/2(NPM)], and 100% organic fertilizer instead of chemical nitrogen fertilizer (M). The effects of organic fertilizer instead of chemical nitrogen fertilizer on organic carbon and its active components, soil carbon pool management index, soil enzyme activity, and maize and soybean yield in yellow soil were studied in order to provide theoretical basis for scientific fertilization and soil quality improvement in this area. The results showed that the replacement of chemical nitrogen fertilizer by organic fertilizer significantly increased soil pH, organic carbon (SOC), total nitrogen (TN) content, and C/N ratio. Compared with those in the CK and NP treatments, the content and distribution ratio of soil active organic carbon components and soil carbon pool management index (CPMI) were improved by replacing chemical nitrogen fertilizer with organic fertilizer, and the effect of replacing chemical nitrogen fertilizer with 50% organic fertilizer was the best. Compared with those in the NP treatment, the 1/2 (NPM) treatment significantly increased the contents of soil readily oxidizable organic carbon (ROC333, ROC167), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) by 22.90%, 8.10%, 29.32%, and 23.22%, respectively. Compared with those under the CK and NP treatments, organic fertilizer instead of chemical nitrogen fertilizer increased soil enzyme activities. The activities of catalase, urease, sucrase, and phosphatase in the 1/2 (NPM) treatment were significantly increased by 21.89%, 8.24%, 34.91%, and 18.78%, respectively, compared with those in the NP treatment. Compared with that of the NP treatment, the maize yield of the 1/2 (NPM) and M treatments was significantly increased by 44.15% and 17.39%, respectively. There was no significant difference in soybean yield among different fertilization treatments. Correlation analysis showed that soil SOC was significantly positively correlated with ROC333, ROC167, ROC33, DOC, MBC, and soil active organic carbon components, and CPMI was significantly positively correlated with soil organic carbon and its active components (P<0.01). Corn yield was significantly positively correlated with soil enzyme activity, CPMI, total organic carbon, and its active components (P<0.05). Therefore, from the perspective of yield increase and soil fertility, 50% organic fertilizer instead of chemical nitrogen fertilizer was conducive to improving soil quality and soil fertility, which is the key fertilization technology to achieve a high yield of crops in the yellow soil area of Anshun, Guizhou.


Assuntos
Carbono , Fertilizantes , Glycine max , Nitrogênio , Compostos Orgânicos , Solo , Zea mays , Solo/química , Zea mays/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , China , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento
18.
Animals (Basel) ; 14(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38997977

RESUMO

Food waste is a common issue arising from grinding of food by experimental animals, leading to excessive food scraps falling into cages. In the wild, animals grind food by gnawing vegetation and seeds, potentially damaging the ecological environment. However, limited ecology studies have focused on food grinding behavior since the last century, with even fewer on rodent food grinding, particularly recently. Although food grinding's function is partially understood, its biological purposes remain under-investigated and driving factors unclear. This review aims to explain potential causes of animal food grinding, identify influencing factors, and discuss contexts and limitations. Specifically, we emphasize recent progress on gut microbiota significance for food grinding. Moreover, we show abnormal food grinding is determined by degree of excess normal behavior, emphasizing food grinding is not meaningless. Findings from this review promote comprehensive research on the myriad factors, multifaceted roles, and intricate evolution underlying food grinding behavior, benefiting laboratory animal husbandry and ecological environment protection, and identifying potential physiological benefits yet undiscovered.

19.
Ecol Evol ; 14(3): e11084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469048

RESUMO

The gut microbiota of rodents is essential for survival and adaptation and is susceptible to various factors, ranging from environmental conditions to genetic predispositions. Nevertheless, few comparative studies have considered the contribution of species identity and geographic spatial distance to variations in the gut microbiota. In this study, a random sampling survey encompassing four rodent species (Apodemus agrarius, Cricetulus barabensis, Tscherskia triton and Rattus norvegicus) was conducted at five sites in northern China's farming-pastoral ecotone. Through a cross-factorial comparison, we aimed to discern whether belonging to the same species or sharing the same capture site predominantly influences the composition of gut microbiota. Notably, the observed variations in microbiome composition among these four rodent species match the host phylogeny at the family level but not at the species level. The gut microbiota of these four rodent species exhibited typical mammalian characteristics, predominantly characterized by the Firmicutes and Bacteroidetes phyla. As the geographic distance between populations increased, the number of shared microbial taxa among conspecific populations decreased. We observed that within a relatively small geographical range, even different species exhibited convergent α-diversity due to their inhabitation within the same environmental microbial pool. In contrast, the composition and structure of the intestinal microbiota in the allopatric populations of A. agrarius demonstrated marked differences, similar to those of C. barabensis. Additionally, geographical environmental elements exhibited significant correlations with diversity indices. Conversely, host-related factors had minimal influence on microbial abundance. Our findings indicated that the similarity of the microbial compositions was not determined primarily by the host species, and the location of the sampling explained a greater amount of variation in the microbial composition, indicating that the local environment played a crucial role in shaping the microbial composition.

20.
Gene ; 893: 147944, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38381510

RESUMO

Tannic acid (TA), a significant plant secondary metabolite, is contained in the daily food of Brandt's voles. Its adverse effect on gut function has been shown in earlier research, but the underlying molecular mechanisms remain uncertain. In this study, male Brandt's vole (13 weeks old) were divided into two groups and given 0 (control) or 1,200 (TA-treated) mg•kg-1 TA for 18 days. Then RNA sequencing was used to conduct a thorough transcriptome analysis on the duodenum, jejunum, and ileum of Brandt's voles. Results showed that TA significantly increased serum total cholesterol concentration (P < 0.05) and decreased the nutrient digestibility (P < 0.05) of Brandt's voles. Furthermore, there were 174 differentially expressed genes (DEGs) in the duodenum, 96 DEGs in the jejunum, and 88 DEGs in the ileum between the control and TA-treated groups. Enrichment analysis revealed that many genes associated with bile secretion, fat digestion and absorption, innate immune response, and tight junction such as ABCG2, ABCG8, PEAK1, and IFR2, etc. were altered after TA treatment, which were verified by quantitative real-time PCR. These findings suggested that TA can change the expression of intestinal genes, thereby, altering nutrition metabolism and immunological function, eventually hindering the growth of Brandt's voles. The results of this study provide a theoretical basis for explaining how TA affects the gut function of Brandt's voles at the molecular level.


Assuntos
Arvicolinae , Perfilação da Expressão Gênica , Polifenóis , Animais , RNA-Seq , Análise de Sequência de RNA , Arvicolinae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA