RESUMO
Lomatogonium rotatum (L.) Fries ex Nym (L. rotatum), a member of Gentianaceae, is an important mongolian medicine in China used to treat febrile diseases in liver and gallbladder. The aim of present study was to investigate the chemical constituents and metabolites of the 50% ethanol fraction of L. rotatum (50EtLR). Firstly, the extract of L. rotatum was partitioned by macroporous resin to obtain the target fraction (50EtLR), then several compounds were isolated from 50EtLR to obtained the standards for further analysis of chemical constituents of 50EtLR. Secondly, the chemical constituents of 50EtLR were characterized using the ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Finally, prototype constituents and related metabolites were analyzed after orally administerng 50EtLR to rats. As a result, a new compound, 6-O-[ß-d-xylopyranosyl-(1 â 6)-O-ß-d-glucopyranosyl]-1,4,8-trimethoxyxanthone (6) along with seven known compounds (1-5, 7 and 8) were isolated from the 50EtLR, 92 components were either unambiguously or tentatively identified. Additionally, 34 prototype constituents and 112 metabolites in rat plasma along with 32 prototype constituents and 53 metabolites in rat liver were tentatively identified. Therefore, xanthones and flavonoids were the main chemical constituents of 50EtLR and sulfation and glucuronidation are the main enzyme-induced metabolic pathways involved post-administration.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides , Gentianaceae , Espectrometria de Massas em Tandem/métodos , Xantonas , Animais , Flavonoides/análise , Flavonoides/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Extratos Vegetais/metabolismo , Ratos , Ratos Sprague-Dawley , Xantonas/análise , Xantonas/metabolismoRESUMO
In this study, we examined the metabolites from different parts of Acanthopanax senticosus and their role in alleviating damage caused by oxidative stress. We used UHPLC-QTOF-MS to analyze the chemical components in the root, seed, and leaf extracts of A. senticosus. Two multivariate statistical analysis methods-namely, principal component analysis and partial least square discriminant analysis-were used to distinguish the samples obtained from different parts of the plant. Using univariate statistics, 130 different metabolites were screened out. Among these, the relative content of flavonoids and terpenoids was found to be highest in the leaves, the lignin and phenolic acid content was highest in the roots, and the amino acid and phenolic acid levels were highest in seeds. An MTT assay was used to test the anti-H2O2 oxidative damage to PC12 cells in different parts of the sample. Lastly, using Pearson's correlation analysis, various metabolites from different parts of A. senticosus were correlated with their antioxidant effects from the corresponding parts. Fifty-two related different metabolites were found, of which 20 metabolites that were positively correlated to oxidative stress were present at a relatively higher level in the roots, whereas 32 metabolites that were negatively correlated were present at relatively higher levels in the seeds and leaves. The results of this study reveal the distribution characteristics and the antioxidant activity of different metabolites of A. senticosus and provide a reference for the rational development of its medicinal parts.
RESUMO
Parishins, important constituents of Gastrodia elata (G. elata), are known to exhibit a number of biological and pharmacological properties. However, their role and mechanisms of action in myocardial ischemia are unknown. The present study investigated the potential protective effects and mechanisms of parishins extracted from G. elata on hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. The results demonstrated that parishins had significant protective effects on myocardial cells with parishins J and B providing greater cardioprotection through down-regulation of the level of cleaved-caspase-3 and cytochrome c in the cytoplasm and Bax, and up-regulation of cytochrome c in the mitochondria and Bcl-2 than induced by the positive control gastrodin. Additional study of the mechanisms of action indicated that the myocardial protection provided by parishin J was due to inhibition of JNK1 phosphorylation levels, down-regulation of c-jun and ATF-2 phosphorylation levels, a decrease in the phosphorylation of 14-3-3 and an increase in its binding to Bax. Therefore, parishin J was revealed to be a promising candidate as a novel treatment for myocardial protection.
Assuntos
Gastrodia/química , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Substâncias Protetoras/farmacologia , Animais , Caspase 3/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação para Baixo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Regulação para Cima/efeitos dos fármacosRESUMO
Gastrodia elata Blume (Orchidaceae, GEB) is a medicinal plant that has been widely used in the treatment of cerebrovascular disease. This study explored the protective effects of GEB against cerebral ischemia-reperfusion using Information-Dependent Acquisition (IDA)-mediated UPLC-Q/TOF-MS-based plasma metabolomics. Cerebral ischemia-reperfusion (IR) injury was induced in male Wistar rats using the Zea Longa method. Biochemical and histological assays were performed to evaluate the therapeutic effects of GEB on IR rats. We found that the neurobehavioral scores and infarction areas of GEB and nimodipine treated groups were dramatically lower than those of the IR groups. Hematoxylin and Eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) showed that GEB significantly improved neuronal injury and prevented neuronal apoptosis. Biochemical analysis revealed that GEB prevented cerebral ischemia-reperfusion injury by regulating inflammation and oxidative injury. Through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-metabolomics-based approaches, 43 plasma metabolites related to GEB treatment were detected, 6 of which significantly differed (p < 0.05) between the model and GEB groups. The levels of l-histidine, sphinganine, thymine, spermidine and deoxycytidine in the IR group were significantly higher than those in the sham group, but decreased following GEB treatment. Arachidonic acid levels were lower in the IR group, but dramatically increased in response to GEB. Pharmacodynamics and metabolomics confirmed that the mechanism of GEB in the treatment of cerebral ischemia was not only related to the reduction of inflammation, oxidation, neurotoxicity, and apoptosis, but also mediated through arachidonic acid metabolism, histidine metabolism, pyrimidine metabolism, arginine and proline metabolism, sphingolipid metabolism, and glycerophospholipid metabolism in vivo.