Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Chip ; 24(10): 2644-2657, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38576341

RESUMO

Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 µm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.


Assuntos
Técnicas Analíticas Microfluídicas , Neovascularização Patológica , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Difusão , Neoplasias/metabolismo , Neoplasias/patologia , Indutores da Angiogênese/metabolismo , Indutores da Angiogênese/farmacologia , Desenho de Equipamento
2.
Clin Vaccine Immunol ; 16(4): 589-91, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19193828

RESUMO

We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports.


Assuntos
Dengue/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas não Estruturais Virais/sangue , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA