Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chemistry ; 26(55): 12539-12543, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510668

RESUMO

Pt-Ni nanoframes (Pt-Ni NFs) exhibit outstanding catalytic properties for several reactions owing to the large numbers of exposed surface active sites, but its stability and selectivity need to be improved. Herein, an in situ method for construction of a core-shell structured Pt-Ni NF@Ni-MOF-74 is reported using Pt-Ni rhombic dodecahedral as self-sacrificial template. The obtained sample exhibits not only 100 % conversion for the selective hydrogenation of p-nitrostyrene to p-aminostyrene conducted at room temperature, but also good selectivity (92 %) and high stability (no activity loss after fifteen runs) during the reaction. This is attributed to the Ni-MOF-74 shell in situ formed in the preparation process, which can stabilize the evolved Pt-Ni NF and donate electrons to the Pt metals that facilitate the preferential adsorption of electrophilic NO2 group. This study opens up new vistas for the design of highly active, selective, and stable noble-metal-containing materials for selective hydrogenation reactions.

2.
Angew Chem Int Ed Engl ; 55(14): 4542-6, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26948848

RESUMO

Pd@CeO2 core-shell nanostructures with a tunable Pd core size, shape, and nanostructure as well as a tunable CeO2 sheath thickness were obtained by a biomolecule-assisted method. The synthetic process is simple and green, as it involves only the heating of a mixture of Ce(NO3 )3 , l-arginine, and preformed Pd seeds in water without additives. Importantly, the synthesis is free of thiol groups and halide ions, thus providing a possible solution to the problem of secondary pollution by Pd nanoparticles in the sheath-coating process. The Pd/CeO2 nanostructures can be composited well with γ-Al2 O3 to create a heterogeneous catalyst. In subsequent tests of catalytic NO reduction by CO, Pd@CeO2 /Al2 O3 samples based on Pd cubes (6, 10, and 18 nm), Pd octahedra (6 nm), and Pd cuboctahedra (9 nm) as well as a simply loaded Pd cube (6 nm)-CeO2 /Al2 O3 sample were used as catalysts to investigate the effects of the Pd core size and shape and the hybrid nanostructure on the catalytic performance.

3.
Nat Commun ; 15(1): 6688, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107273

RESUMO

Human society is facing increasingly serious problems of environmental pollution and energy shortage, and up to now, achieving high NH3-SCR activity at ultra-low temperatures (<150 °C) remains challenging for the V-based catalysts with V content below 2%. In this study, the monoatomic V-based catalyst under the weak current-assisted strategy can completely convert NOx into N2 at ultra-low temperature with V content of 1.36%, which shows the preeminent turnover frequencies (TOF145 °C = 1.97×10-3 s-1). The improvement of catalytic performance is mainly attributed to the enhancement catalysis of weak current (ECWC) rather than electric field, which significantly reduce the energy consumption of the catalytic system by more than 90%. The further mechanism research for the ECWC based on a series of weak current-assisted characterization means and DFT calculations confirms that migrated electrons mainly concentrate around the V single atoms and increase the proportion of antibonding orbitals, which make the V-O chemical bond weaker (electron scissors effect) and thus accelerate oxygen circulation. The novel current-assisted catalysis in the present work can potentially apply to other environmental and energy fields.

4.
J Hazard Mater ; 459: 132209, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567137

RESUMO

It is essential to develop the catalyst for NH3-SCR with excellent performance at ultra-low temperature (≤150 °C), and resource recycling is another important part of environmental protection. Based on the principle of environmental friendliness, the LiMn2O4, one of the waste battery cathode materials, was successfully modified into a novel high-value catalyst for ultra-low temperature NH3-SCR through hydrogen ion exchange and two-dimensional vanadic oxide modification. The optimized LiMn2O4-0.5V-10H catalyst performed the best balance of NOx conversion and N2 selectivity, with activity reaching 96 % at 150 °C and N2 selectivity exceeding 70 % at ultra-low temperature. Due to the unique three-dimensional network structural characteristics of LiMn2O4 spinel, hydrogen exchange could exchange Li+ from the lattice and increase surface acidity; and a small amount of two-dimensional vanadic oxide loading could appropriately regulate redox ability and increase acidic sites. The in-situ DRIFTS results still showed that the L-H and E-R mechanisms coexisted during the reaction. Moreover, combining first-principles calculations and in-situ DRIFTS, the dual modification of H and V could enhance the adsorption of NH3 on the surface of LiMn2O4 but weaken the adsorption of NO, and promote the decomposition of nitrites while inhibit the formation of surface nitrate species, which was the core reason for the improvement of N2 selectivity. The modification mode in this work was simple and inexpensive, which provided a new idea for the high-value utilization of waste batteries and the design of NOx purification catalyst at ultra-low temperature.

5.
J Phys Chem Lett ; 13(38): 8825-8832, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36107836

RESUMO

Modulating the Rh active sites on surfaces of Al2O3 is crucial to developing effective three-way catalysts. Herein, an ultralow amount of ZrO2 (0.0179%) was deposited onto Al2O3 nanorods via atomic layer deposition (ALD) to form a catalyst with both thermal stability and low-temperature activity. The results demonstrate that the ALD-ZrO2 is conducive to improve the catalytic activity of the Rh site and inhibit the formation of irreducible Rh species at high temperature. The obtained catalysts show satisfactory performance for a model NO-CO reaction even after thermal aging at 1050 °C. This strategy shows that a molecularly precise synthesis can lead to the robust promotion of Rh activity under low temperature and provide a promising path toward reducing the deactivation of catalysts at high temperature.

6.
J Hazard Mater ; 416: 126194, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492958

RESUMO

The improvement of stability is a crucial and challenging issue for industrial catalyst, which affects not only the service time but also the cost of catalyst. This is especially prominent for that applied in harsh environment atmospheres, such as the exhaust of diesel vehicles. Herein, we reported a new strategy to improve the high-temperature hydrothermal stability of Cu-SSZ-13, which is a promising catalyst for the treatment of exhaust emitted from diesel vehicles through the NH3-SCR NOx route. Different from that reported in literature, we managed to improve the high-temperature hydrothermal stability of Cu-SSZ-13 by coating the surface with a nanolayer of stable SiO2 material using the atomic layer deposition (ALD) method. The coating of SiO2 layers effectively suppressed the leaching of alumina from the SSZ-13 molecular sieve even after the hydrothermal aging at 800 °C for 16 h with 12.5% water in air. Meanwhile, the ultra-thin SiO2 nanolayer does not block the pores of zeolites and affect the catalytic activity of Cu-SSZ-13 contribute to the superiority of the ALD technology.

7.
J Am Chem Soc ; 132(48): 17084-7, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21073152

RESUMO

Micro- and nanoparticles with high-index facets may exhibit higher chemical activities that are of great importance in practical applications. Cuprite is a potential alternative to expensive noble metals as the catalyst for CO oxidation at moderate temperatures. We report here a solution based approach to the preparation of unusual polyhedral 50-facet Cu2O microcrystals with a morphological yield higher than 70%. It has been revealed that the concentration of OH(-) and the volume ratio of polar organic solvent to water in the mixed solvent play crucial roles in controlling the morphology of Cu2O microcrystals. The formation of the 50 facets could be geometrically viewed as the truncation of all the 24 vertices of a small rhombicuboctahedron having 26 facets. When growing from solutions, however, the anisotropic growth rates along the <100>, <110>, and <111> directions might be responsible for the formation of this morphology. The Miller index of the 24 nearly isosceles trapezoids could be assigned to {311} planes based on geometrical analysis and was verified by simulated models using the WinXmorph software and supported by TEM and ED observations. Compared with other polyhedral Cu2O microcrystals, the as-prepared microcrystals showed a higher specific catalytic rate toward CO oxidation.

8.
J Hazard Mater ; 363: 439-446, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30340173

RESUMO

The MOx (M = Cu, Mn, Co)/CePO4 support was firstly prepared via the hydrothermal and impregnated method. Selective catalytic reduction of NO with NH3 (NH3-SCR) results showed that the MnOx modifications greatly improved the SCR activities at low temperatures. The NOx conversion of the MnOx/CePO4 catalyst was above 80% even at 180 °C. In-situ DRIFTS results suggest that the SCR reaction is majorly conducted between the absorbed monodentate nitrate and NH3 species (i.e., the Langmuir-Hinshelwood mechanism). MOx (M = Cu, Mn, Co) exists in the formation of nano-size particles obtained by SEM and TEM directly. These nano-size particles can provide active surface adsorbed oxygen and thus improve the NO oxidation ability as indicated by the O2-TPD and NO oxidation tests. The process of NO oxidation to NO2 plays a key role to produce the absorbed monodentate nitrate as indicated by the In-situ DRIFTS. The support CePO4 acts as the acid sites to form highly active NH4+ species. The synergic effect between the MnOx and CePO4 contributed to the high SCR activity over the MnOx/CePO4 catalyst. Additionally, the MOx/CePO4 catalyst exhibits an excellent water tolerance and N2 selectivity. Consequently, the MnOx/CePO4 catalyst becomes the potential catalyst for the practical process.

9.
Carbohydr Res ; 343(4): 685-94, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18258223

RESUMO

Arabinogalactan derivatives conjugated with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A2) or hexylamine (Gd-DTPA-CMAG-A6) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), 13C nuclear magnetic resonance (13C NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Relaxivity studies showed that arabinogalactan-bound complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA, and the influence of the spacer arm lengths on the T1 relaxivities was studied. Their stability was investigated by competition study with Ca2+, EDTA, and DTPA. MR imaging of Wistar rats showed remarkable enhancement in rat liver and kidney after i.v. injection of Gd-DTPA-CMAG-A2 (0.079+/-0.002 mmol/kg Gd3+): The mean percentage enhancement of the liver parenchyma and kidney was 38.7+/-6.4% and 69.4+/-4.4% at 10-30 min. Our preliminary in vivo and in vitro study indicates that the arabinogalactan-bound complexes are potential liver-specific contrast agents for MRI.


Assuntos
Meios de Contraste/síntese química , Meios de Contraste/farmacologia , Gadolínio DTPA/química , Galactanos/síntese química , Galactanos/farmacologia , Animais , Cromatografia em Gel , Meios de Contraste/química , Galactanos/química , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Chem Sci ; 9(38): 7569-7574, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30319758

RESUMO

By integrating redox self-assembly and redox etching processes, we report a general one-pot strategy for the synthesis of Au@multi-M x O y (M = Co, Ce, Fe, and Sn) yolk@shell nanospheres. Without any additional protecting molecule or reductant, the whole reaction is a clean redox process that happens among the inorganic metal salts in an alkaline aqueous solution. By using this method, Au@Co3O4/CeO2 (Au@Co-Ce), Au@Co3O4/Fe2O3 (Au@Co-Fe), and Au@CeO2/SnO2 (Au@Ce-Sn) yolk@shell nanospheres with binary oxides as shells, Au@Co3O4/CeO2/Fe2O3 (Au@Co-Ce-Fe) yolk@shell nanospheres with ternary oxides as shells and Au@Co3O4/CeO2/Fe2O3/SnO2 (Au@Co-Ce-Fe-Sn) yolk@shell nanospheres with quaternary oxides as shells can be obtained. Subsequently, the catalytic CO oxidation was selected as the catalytic model, and the Au@Co-Ce system was chosen as the catalyst. It was found that the catalytic activity of Au@Co-Ce yolk@shell nanospheres can be optimized by altering the relative proportion of Co and Ce oxides.

12.
J Phys Chem Lett ; 5(14): 2479-83, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26277819

RESUMO

Redispersion of platinum nanoparticles (Pt NPs) on ceria is an important route for catalyst regeneration and antisintering. Here, we investigate the redispersion of Pt on ceria nanoparticles with defined surface planes including cubes ({100}) and octahedra ({111}). It is observed that Pt redispersion takes place only on ceria cubes in an alternating oxidation and reduction atmosphere. A quicker alternation rate is beneficial for such redispersion. On the basis of our experimental results and understandings toward this process, we proposed that the redispersion takes place at the moment of alternation of oxidation and reduction.

13.
Biosens Bioelectron ; 38(1): 402-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22727516

RESUMO

An enzymeless glucose biosensor based on polypyrrole nanofibers-supporting Au nanoparticles (Au/PPyNFs) was investigated in this study. The Au/PPyNFs heterogeneous composite materials were synthesized in-situ via hydrogen bonding interactions for the assembly of polyethyleneimine (PEI) on the surface of polypyrrole nanofibers (PPyNFs). By changing the molar ratio of PPy to HAuCl(4), Au/PPyNFs with different Au loadings were obtained. The morphology and composition of Au/PPyNFs were characterized using SEM, TEM, FTIR, XRD and XPS, respectively. The hybrids exhibited a high electrocatalytic activity toward glucose oxidation, which is prerequisite for the catalysts to be applied in amperometric glucose sensors. By using the nonenzymatic glucose sensor based on Au/PPyNFs, 0.2-13 mM glucose can be detected with a sensitivity of 1.003 µA cm(-2)mM(-1) and a good linearity (R(2)=0.9993) between current density and glucose concentration. The proposed glucose sensor provides a promising strategy to construct fast, sensitive, and anti-interfering amperometric sensors for early diagnosis and prevention of diabetes.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Ouro/química , Nanofibras/química , Nanopartículas/química , Polímeros/química , Pirróis/química , Técnicas Eletroquímicas/métodos , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Oxirredução , Sensibilidade e Especificidade
14.
Chem Commun (Camb) ; 48(90): 11118-20, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23042030

RESUMO

An active-site-accessible porous metal-organic framework from self-assembling of trinuclear Cu(II) building units exhibits high CO oxidation activity and significant antiferromagnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA