Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38140945

RESUMO

AIM: To investigate the inhibitory impact of chlorogenic acid (CGA) on the growth of Morganella psychrotolerans and its ability to form histamine. METHODS AND RESULTS: The antimicrobial effect of CGA on M. psychrotolerans was evaluated using the minimum inhibitory concentration (MIC) method, revealing an MIC value of 10 mg ml-1. The alkaline phosphatase (AKP) activity, cell membrane potential, and scanning electron microscopy images revealed that CGA treatment disrupted cell structure and cell membrane. Moreover, CGA treatment led to a dose-dependent decrease in crude histidine decarboxylase (HDC) activity and gene expression of histidine decarboxylase (hdc). Molecular docking analysis demonstrated that CGA interacted with HDC through hydrogen bonds. Furthermore, in situ investigation confirmed the efficacy of CGA in controlling the growth of M. psychrotolerans and significantly reducing histamine formation in raw tuna. CONCLUSION: CGA had good activity in controlling the growth of M. psychrotolerans and histamine formation.


Assuntos
Ácido Clorogênico , Histamina , Histamina/análise , Ácido Clorogênico/farmacologia , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Simulação de Acoplamento Molecular , Alimentos Marinhos
2.
Phys Chem Chem Phys ; 25(4): 3100-3109, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36621815

RESUMO

Phosphorene, a novel member of the two-dimensional nanomaterial family, has demonstrated great potential in biomedical applications, such as photothermal therapy, drug delivery and antibacterial. However, phosphorene is unstable and easily oxidized in an aerobic environment. In this paper, using larger-scale molecular dynamics simulations, we investigated the disruption of phosphorene oxide (PO) to the structure of a model protein, villin headpiece subdomain (HP35). It shows that the disruption of PO nanosheets to the protein structure is enhanced with increasing oxidation concentration of PO, while PO's oxidation mode has very little effect on the PO-HP35 interaction. PO with a low oxidation concentration has certain biocompatibility to HP35. Oxygen atoms filling into the groove region in the puckered surface of phosphorene enhance the dispersion interaction between phosphorene and HP35, which enhances the disruption of phosphorene to the structure of HP35. Compared with the dispersion interaction, the electrostatic interaction between PO and the protein has a negligible effect on the structural damage of HP35. These findings might shed light on the biological toxicity of PO nanosheets and would be helpful for future potential biomedical applications of PO nanosheets, such as nanodrugs and antibacterial agents.


Assuntos
Proteínas dos Microfilamentos , Óxidos , Proteínas dos Microfilamentos/química , Simulação de Dinâmica Molecular
3.
J Sci Food Agric ; 103(11): 5277-5287, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37016843

RESUMO

BACKGROUND: Oxidation has been reported as the one of the deterioration reactions of proteins in aquatic products. Searching for new bioactive substances from marine algae has been one of the main areas in food science and additives. RESULTS: In this study, a novel protein from the red alga Porphyra haitanensis was determined after ammonium sulfate precipitation and gel filtration chromatography. It closely corresponded to the antioxidant activity and was identified as an uncharacterized protein with a molecular mass of 43 kDa, designated Ph43. Bioinformatic analysis revealed that Ph43 is a novel protein of non-phycobiliprotein family with putative chordin domains and rich in α-helical conformation. Recombinant protein (rPh43) was expressed in Escherichia coli as a Hig-tagged protein using a pET-22b vector system and purified by affinity high-performance liquid chromatography. Spectroscopy analysis revealed that there were no structural differences between rPh43 and natural recovered Ph43. Moreover, rPh43 showed equal/higher antioxidant activity compared with Ph43. rPh43 has the potential for application as a natural antioxidant for food stabilization. CONCLUSION: Our results identified a novel antioxidant protein with molecular mass of 43 kDa derived from Porphyra haitanensis that belongs to the non-phycobiliprotein family. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Porphyra , Antioxidantes/química , Porphyra/química , Peso Molecular , Cromatografia em Gel
4.
Small ; 18(12): e2106477, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092161

RESUMO

Epidermal electronics have been developed with gas/sweat permeability for long-term wearable electrophysiological monitoring. However, the state-of-the-art breathable epidermal electronics ignore the sweat accumulation and immersion at the skin/device interface, resulting in serious degradation of the interfacial conformality and adhesion, leading to signal artifacts with unstable and inaccurate biopotential measurements. Here, the authors present an all-nanofiber-based Janus epidermal electrode endowed with directional sweat transport properties for artifact-free biopotential monitoring. The designed Janus multilayered membrane (≈15 µm) of superhydrophilic-hydrolyzed-polyacrylonitrile (HPAN)/polyurethane (PU)/Ag nanowire (AgNW) can quickly (less than 5 s) drive sweat away from the skin/electrode interface while resisting its penetration in the reverse direction. Along with the medical adhesive (MA)-reinforced junction-nodes, the adhesion strength among the heterogeneous interfaces can be greatly enhanced for robust mechanical-electrical stability. Therefore, their measured on-body electromyography (EMG) and electrocardiography (ECG) signals are free of sweat artifacts with negligible degradation and baseline drift compared to commercial Ag/AgCl gel electrodes and hydrophilic textile electrodes. This work paves a way to design novel directional-sweat-permeable epidermal electronics that can be conformally attached under sweaty conditions for long-term biopotential monitoring and shows the potential to apply epidermal electronics to many challenging conditions.


Assuntos
Nanofibras , Suor , Artefatos , Eletrodos , Permeabilidade
5.
Mar Drugs ; 20(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135734

RESUMO

The objective of this research was to investigate the antioxidant activity of Gracilarialemaneiformis polysaccharide degradation and its underlying mechanism involved in the Nrf-2/Keap-1 signaling pathway in HepG2 cells with oxidative stress induced by H2O2. The result of the scavenging ability of free radicals showed that GLP-HV (polysaccharide degraded by H2O2-vitamin C (Vc)) performed a better scavenging ability than GLP (G.lemaneiformis polysaccharide). Moreover, the scavenging ability of polysaccharide to these free radicals from strong to weak was as follows: superoxide radical, ferric ion, ABTS+, and DPPH radical, and their IC50 values were 3.56 ± 0.0028, 4.97 ± 0.18, 9.62 ± 0.35, and 23.85 ± 1.78 mg/mL, respectively. Furthermore, GLP-HV obviously relieved oxidative stress in HepG2 cells, which strengthened the activity of T-AOC, CAT, GSH-PX, and SOD, and diminished the intensity of MDA, intracellular ROS, and calcium ion based on the Nrf-2/Keap-1 signaling pathway. The PCR result revealed that polysaccharide upregulated the expression of the genes Nrf-2, HO-1, NQO-1, and ZO-1 and downregulated Keap-1. The correlation between chemical properties and antioxidant mechanism of GLP-HV was evaluated via a heat map. The results illustrated that reducing sugar and active groups presented a positive correlation, and molecular weight and viscosity exhibited a negative relation with antioxidant activity.


Assuntos
Gracilaria , Rodófitas , Antioxidantes/química , Ácido Ascórbico , Cálcio/metabolismo , Gracilaria/química , Células Hep G2 , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Rodófitas/metabolismo , Transdução de Sinais , Açúcares , Superóxido Dismutase/metabolismo , Superóxidos
6.
J Am Chem Soc ; 143(10): 4017-4023, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33663217

RESUMO

Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal-organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1-20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.

7.
Soft Matter ; 17(40): 9057-9065, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34581395

RESUMO

Hydrogel-based soft and stretchable materials with skin/tissue-like mechanical properties provide new avenues for the design and fabrication of wearable sensors. However, synthesizing multifunctional hydrogels that simultaneously possess excellent mechanical, electrical and electromagnetic interference (EMI) shielding effectiveness is still a great challenge. In this work, the freeze-casting method is employed to fabricate a multifunctional hydrogel by filling Fe3O4 clusters into poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) and polyvinyl alcohol (PVA) composite aqueous solution. The hydrogel possesses superior electrical and mechanical properties as well as great electromagnetic wave shielding properties. Benefiting from the high stretchability (∼904.5%) and fast sensing performance (response time ∼9 ms and self-recovery time ∼12 ms within the strain range ∼100%), the monitoring of human activities and manipulation of a remote-controlled toy car using the hydrogel-based stretchable strain sensors are successfully demonstrated. In addition, a great EMI shielding effectiveness with more than 46 dB in the frequencies of 8-12.5 GHz can be obtained, which provides an alternative strategy for designing next-generation EMI shielding materials. These results indicate that the multifunctional hydrogels can be used as flexible and stretchable sensing electronics requiring effective EMI shielding.

8.
Microb Ecol ; 82(2): 319-333, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33410933

RESUMO

To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.


Assuntos
Rios , Vibrio cholerae não O1 , Resistência a Múltiplos Medicamentos , Humanos , Tipagem de Sequências Multilocus , Vibrio cholerae não O1/genética , Virulência/genética
9.
Mar Drugs ; 19(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34677437

RESUMO

The objective of the present study was to investigate the xanthine oxidase (XO) inhibitory effects of peptides purified and identified from round scad (Decapterus maruadsi) hydrolysates (RSHs). In this study, RSHs were obtained by using three proteases (neutrase, protamex and alcalase). Among them, the RSHs of 6-h hydrolysis by neutrase displayed the strongest XO inhibitory activity and had an abundance of small peptides (<500 Da). Four novel peptides were purified by immobilized metal affinity chromatography and identified by nano-high-performance liquid chromatography mass/mass spectrometry. Their amino acid sequences were KGFP (447.53 Da), FPSV (448.51 Da), FPFP (506.59 Da) and WPDGR (629.66 Da), respectively. Then the peptides were synthesized to evaluate their XO inhibitory activity. The results indicated that the peptides of both FPSV (5 mM) and FPFP (5 mM) exhibited higher XO inhibitory activity (22.61 ± 1.81% and 20.09 ± 2.41% respectively). Fluorescence spectra assay demonstrated that the fluorescence quenching mechanism of XO by these inhibitors (FPSV and FPFP) was a static quenching procedure. The study of inhibition kinetics suggested that the inhibition of both FPSV and FPFP was reversible, and the type of their inhibition was a mixed one. Molecular docking revealed the importance of π-π stacking between Phe residue (contained in peptides) and Phe914 (contained in the XO) in the XO inhibitory activity of the peptides.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Peixes/química , Peixes , Hidrolisados de Proteína/química , Xantina Oxidase/antagonistas & inibidores , Animais , Organismos Aquáticos , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular
10.
Mar Drugs ; 20(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35049867

RESUMO

Gracilaria lemaneiformis polysaccharide (GLP) exhibits good physiological activities, and it is more beneficial as it is degraded. After its degradation by hydrogen peroxide combined with vitamin C (H2O2-Vc) and optimized by Box-Behnken Design (BBD), a new product of GLP-HV will be generated. While using GLP as control, two products of GLP-H (H2O2-treated) and GLP-V (Vc-treated) were also produced. These products chemical characteristics (total sugar content, molecular weight, monosaccharide composition, UV spectrum, morphological structure, and hypolipidemic activity in vitro) were assessed. The results showed that the optimal conditions for H2O2-Vc degradation were as follows: H2O2-Vc concentration was 18.7 mM, reaction time was 0.5 h, and reaction temperature was 56 °C. The total sugar content of GLP and its degradation products (GLP-HV, GLP-H and GLP-V) were more than 97%, and their monosaccharides are mainly glucose and galactose. The SEM analysis demonstrated that H2O2-Vc made the structure loose and broken. Moreover, GLP, GLP-HV, GLP-H, and GLP-V had significantly inhibition effect on α-glucosidase, and their IC50 value were 3.957, 0.265, 1.651, and 1.923 mg/mL, respectively. GLP-HV had the best inhibition effect on α-glucosidase in a dose-dependent manner, which was the mixed type of competitive and non-competitive. It had a certain quenching effect on fluorescence of α-glucosidase, which may be dynamic quenching.


Assuntos
Gracilaria , Hipolipemiantes/farmacologia , Polissacarídeos/farmacologia , alfa-Glucosidases/efeitos dos fármacos , Animais , Organismos Aquáticos , Hipolipemiantes/química , Concentração Inibidora 50 , Polissacarídeos/química
11.
J Sci Food Agric ; 100(13): 4671-4677, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32253757

RESUMO

BACKGROUND: Gel properties are important in determining the quality of surimi. In addition to myofibrillar proteins, lipids play an important role in the formation of surimi gel. Phospholipids (PL) are amphoteric lipids that cannot be removed through rinsing. Paradoxically, the addition of PL increases or decreases gel strength. This research aimed to investigate the effects of specific lipids on the gelation properties of surimi from three different carp. RESULTS: The hardness, chewiness, and gel strength of bighead carp (Aristichthys nobilis: BC) surimi were higher, and the total lipid content was lower when compared with grass carp (Ctenopharyngodon idellus: GC) and silver carp (Hypophthalmichthys molitrix: SC) surimi. Bighead carp surimi had lower levels of phosphatidylethanolamine (PE), phosphatidylinositols (PI), and phosphatidylcholine (PC), and higher phosphatidylserine (PS) and sphingomyelin (SM) content. The gelation properties of surimi increased with increasing concentrations of SM and PS. Furthermore, increased levels of saturated fatty acids (SFAs) and decreased levels of polyunsaturated fatty acids (PUFAs) increased gelation properties. Finally, higher hydrophobic interactions and more disulfide bonds were shown to increase gel network structure stability, resulting in improving gel strength in BC surimi. CONCLUSION: The textural characteristics and gel strength of surimi were dependent on the PL content, including total lipid levels and the types of fatty acids. This may account for previous conflicting reports on PL effects on gel strength. This study provides insight into how the texture of surimi can be improved and provides a starting point for further research. © 2020 Society of Chemical Industry.


Assuntos
Produtos Pesqueiros/análise , Aditivos Alimentares/análise , Géis/química , Fosfolipídeos/análise , Animais , Carpas , China , Manipulação de Alimentos , Interações Hidrofóbicas e Hidrofílicas
12.
Molecules ; 24(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430953

RESUMO

Schizochytrium limacinum residue was hydrolyzed with various proteases (papain, trypsin, Flavourzyme, Protamex, and Alcalase 2.4L) to obtain antioxidative peptides. The results showed that the S. limacinum hydrolysates (SLHs) prepared with compound proteases (Protamex and Alcalase 2.4L) had the highest antioxidant activity, which was measured using methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability (IC50 = 1.28 mg/mL), hydroxyl radical scavenging ability (IC50 = 1.66 mg/mL), and reducing power (1.42 at 5.0 mg/mL). The hydrolysates were isolated and purified by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). Through analysis of electrospray ionization-mass spectrometer (ESI-MS/MS), the purified antioxidant peptide was identified as Pro-Tyr-Lys (406 Da). Finally, the identified peptide was synthesized for evaluating its antioxidant activity. The •OH scavenging ability and reducing power of Pro-Tyr-Lys were comparable to those of reduced L-glutathione (GSH). These results demonstrated that the antioxidant peptides from SLHs could potentially be used as effective antioxidants.


Assuntos
Antioxidantes/química , Microalgas/química , Peptídeos/química , Hidrolisados de Proteína/química , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Glutationa/química , Hidrólise , Radical Hidroxila/química , Peroxidação de Lipídeos , Peptídeo Hidrolases/química , Picratos/química , Espectrometria de Massas por Ionização por Electrospray , Superóxidos/química
13.
J Sci Food Agric ; 99(14): 6121-6128, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31260117

RESUMO

Shrimp has been widely accepted as an excellent resource for white meat due to its high-protein and low-fat content, especially low cholesterol. However, shrimps are highly perishable during preservation and retailing procedures due to the activities of enzymatic proteolysis, lipid oxidation, and microbial degradation. With increasing knowledge of and demands for safety, nutrition, and freshness of shrimp products, energy efficient, quality, maintained, and sustainable preservation technologies are needed. Low-temperature preservation, a practical processing method for improving the shelf life of food products, is widely used in the aquatic industry. This review focuses on the effects of low-temperature preservation on the quality changes in Litopenaeus vannamei. It considers physicochemical properties, sensory evaluation, melanosis assessment, and microbiological analysis. The perspectives of non-protein-based techniques on quality analysis of shrimps during preservation are also discussed. © 2019 Society of Chemical Industry.


Assuntos
Penaeidae/química , Frutos do Mar/análise , Animais , Conservação de Alimentos , Controle de Qualidade , Temperatura
14.
J Food Sci Technol ; 55(10): 4266-4275, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30228425

RESUMO

The aim of this study was to establish a system for the efficient expression and purification of new subtype of antioxidant peptide from Pinctada fucata meat (NPFMAP), which is designed by molecular modification technology based on the sequence of purified and identified antioxidant peptide from Pinctada fucata meat (PFMAP, Gly-Ala-Gly-Leu-Pro-Gly-Lys-Arg-Glu-Arg), and to better understand the relationship between structure and antioxidant activity. Meanwhile, gene codon usage was optimized and the glutathione S-transferase (GST) tag of pGEX-6P-1 was added to facilitate expression and purification NPFMAP in Escherichia coli. The results of antioxidant activity assay in vitro showed a higher antioxidant activity in NPFMAP than that in enzymatic hydrolysis digested or chemically synthesized PFMAP. In particular, the DPPH scavenging radical activity increased by about 4.7 times after molecular modification. Structural bioanalysis indicated that new subtype antioxidant peptide had spatial conformation and good hydrophilic after modification, which was confirmed by antioxidant activity assays. Thus, the proposed method could be used to obtain NPFMAP with high antioxidant activity.

15.
J Sep Sci ; 39(12): 2356-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27121404

RESUMO

In this work, a magnetic metal-organic framework designated as MIL-100(Fe) was prepared and applied as a magnetic solid-phase extraction sorbent for the determination of trace polycyclic aromatic hydrocarbons in environmental water samples by coupling with high-performance liquid chromatography and fluorescence detection. The magnetic microspheres exhibited large surface areas and high extraction ability, making them excellent candidates as sorbents for enrichment of trace polycyclic aromatic hydrocarbons. Under the optimized experimental conditions, good sensitivity levels were achieved with low detection limits ranging from 32 to 2110 pg/mL and good linearities with correlation coefficients higher than 0.9990 for the investigated 13 polycyclic aromatic hydrocarbons. The proposed method has been validated in the analysis of real water samples with mean recoveries in the range of 81.4-126.9% at four spiked levels and the relative standard deviations in the range of 1.3-17.0%. The magnetic MIL-100(Fe) microspheres were stable enough for 150 extractions without a significant loss of extraction performance.

16.
Eur Biophys J ; 44(8): 677-84, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26290058

RESUMO

The NF-[Formula: see text]B signaling system regulates a number of cellular processes. Recent studies with simplified models found a damped function of the dual delayed feedback NF-κB signaling module. We use a computational model to investigate how multiple delayed feedback aids achieving damping oscillation in the system and how internal noise can influence the damping function. A curve-fitting method (CFM) is introduced to quantify the damped oscillation. Our results show that (1) the structure of multiple delayed feedback, containing double or triple significantly delayed feedback, determines achieving damped oscillation. (2) Internal noise could aid the system to achieve damped oscillation under almost all circumstances.


Assuntos
Retroalimentação Fisiológica , Modelos Teóricos , NF-kappa B/metabolismo , Periodicidade , Transdução de Sinais , Tempo de Reação
17.
J Food Sci Technol ; 51(9): 2148-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190876

RESUMO

The influence of processing conditions on the microencapsulation of tilapia oil by spray drying was studied. Trehalose, gelatin, sucrose and xanthan were used as emulsion composition. The experimental parameters of spray drying such as inlet air temperature, solid content, drying air flow rate and atomizing pressure were optimized using a central composite design. Encapsulation efficiency and lipid oxidation were determined. Bulk density, powder morphology and particle size were also analyzed. Trehalose improved the glass transition temperature of wall material significantly and prevented the oxidation of the fish oil. Encapsulation efficiency reached a maximum of 90 % under optimum conditions with an inlet air temperature of 121 °C, a drying air flow rate of 0.65 m(3)/min and a spray pressure of 100 kPa.

18.
Food Chem X ; 17: 100518, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36478709

RESUMO

The effects of magnetic field-assisted immersion freezing (MF) with different intensities (20, 40, 60, and 80 mT) on the freezing process and muscle quality of white shrimp (Litopenaeus vannamei) were studied in the present study. The results showed that, compared with immersion freezing (IF), 60 mT MF (MF-60) shortened the total freezing time, reduced thawing loss and cooking loss, and helped to maintain the water holding capacity and texture properties of frozen shrimp samples. In addition, the increase in the L* value of frozen shrimp samples was also inhibited by MF-60. The result of water distribution revealed that MF-60 reduced the mobility and loss of immobilized water and free water. The microstructure of MF-60 was characterized by smaller pores, indicating that MF-60 promoted the generation of fine ice crystals. Overall, MF-60 was beneficial in reducing ice crystal size and inhibiting the loss of shrimp muscle quality loss during the freezing process.

19.
Food Chem ; 400: 134061, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084591

RESUMO

The underlying mechanism of the role of mitochondria in color changing of tilapia fillet during 0-4 d storage is not completely clear. A total of 209 differentially significant expressed proteins (DSEPs) were identified by using label-free mitochondrial proteomics, with 56 proteins up-regulated in T2 and 61 proteins (up-regulated) in T3. Protein-Protein interaction reveled proteins which participate in TCA cycles (Citrate synthase (cs)), Oxidoreductase (Malate dehydrogenase (mdh1, mdh2), Succinyl-CoA (Oxct1), Hydroxyacyl-coenzyme a dehydrogenase (hadh), Dehydrogenase/reductase (SDR family) member 1 (dhrs1)) interacted strongly with each other. In turn, they can increase the level of mitochondrial respiration and mitochondrial function, leading to color changing of tilapia fillet. The heat shock 60kD protein 1 (chaperonin, hspd1) interacted with metabolic enzymes (cs and mdh2) and had important effects on color. These results could help researchers better understand the color changing mechanism on the surface of tilapia fillet during the storage.


Assuntos
Carne Vermelha , Tilápia , Animais , Citrato (si)-Sintase/metabolismo , Coenzima A , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Proteínas Mitocondriais , Proteômica , Carne Vermelha/análise , Tilápia/genética , Tilápia/metabolismo
20.
Food Sci Nutr ; 11(1): 261-273, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655069

RESUMO

Peptides from oysters have several bioactive functions. In this study, we identified antioxidant peptides from oysters (Crassostrea rivularis) and investigated their structure-function relationship. We used an 8 kDa molecular-weight (MW) cut-off membrane and semiprep reversed-phase liquid chromatography to collect five peptides (F1-F5) and identified the highest-abundance ion-peak sequences AWVDY (F1), MSFRFY(F2), EPLRY(F3), RKPPWPP(F4), and YAKRCFR(F5) having MWs of 652, 850, 676, 877, and 943 Da, respectively, using ultra-performance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry. These peptides exhibited high antioxidant activities, similar to butylated hydroxytoluene, reduced glutathione, and ascorbic acid. F5 demonstrated the highest scavenging activity for DPPH radicals (IC50 = 21.75 µg/ml), hydroxyl radicals (IC50 = 18.75 µg/ml), and superoxide radicals (IC50 = 11.00 µg/ml), while F3 demonstrated the highest reducing power. Furthermore, F5 significantly protected Caco-2 cells from H2O2-induced oxidative damage. These results suggest that the antioxidant peptide F5 is a promising food additive that protects against oxidative damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA