Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(6): e23538, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38482729

RESUMO

Stem cells respond and remember mechanical cues from the microenvironment, which modulates their therapeutic effects. Chromatin organization and energy metabolism regulate the stem cell fate induced by mechanical cues. However, the mechanism of mechanical memory is still unclear. This study aimed to investigate the effects of mechanical amplitude, frequency, duration, and stretch cycle on mechanical memory in mesenchymal stem cells. It showed that the amplitude was the dominant parameter to the persistence of cell alignment. F-actin, paxillin, and nuclear deformation are more prone to be remolded than cell alignment. Stretching induces transcriptional memory, resulting in greater transcription upon subsequent reloading. Cell metabolism displays mechanical memory with sustained mitochondrial fusion and increased ATP production. The mechanical memory of chromatin condensation is mediated by histone H3 lysine 27 trimethylation, leading to much higher smooth muscle differentiation efficiency. Interestingly, mechanical memory can be transmitted based on direct cell-cell interaction, and stretched cells can remodel the metabolic homeostasis of static cells. Our results provide insight into the underlying mechanism of mechanical memory and its potential benefits for stem cell therapy.


Assuntos
Cromatina , Células-Tronco Mesenquimais , Cromatina/metabolismo , Estresse Mecânico , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Músculo Liso , Proliferação de Células
2.
Nature ; 567(7747): E11, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30814740

RESUMO

In this Letter, the top structure of the right panel of Fig. 1a should be that of cis-9-octadecenoic acid, not trans-9-octadecenoic acid. Please see the accompanying Author Correction. This error has not been corrected online.

3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969844

RESUMO

Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated. Herein, we report 1) two structures of DPS in complex with 2OG and (±)-yatein, 2) in vitro analysis of enzymatic reactivity with substrate analogs, and 3) model reactions addressing DPS's catalytic mechanism. The results disfavor a prior proposal of on-pathway benzylic hydroxylation. Rather, the DPS-catalyzed cyclization likely proceeds by hydrogen atom abstraction from C7', oxidation of the benzylic radical to a carbocation, Friedel-Crafts-like ring closure, and rearomatization of ring B by C6 deprotonation. This mechanism adds to the known pathways for transformation of the carbon-centered radical in Fe/2OG enzymes and suggests what types of substrate modification are likely tolerable in DPS-catalyzed production of deoxypodophyllotoxin analogs.


Assuntos
Berberidaceae/enzimologia , Medicamentos de Ervas Chinesas/química , Ligases/química , Proteínas de Plantas/química , Podofilotoxina/análogos & derivados , Oxirredução , Podofilotoxina/química
4.
Proc Natl Acad Sci U S A ; 119(49): e2212802119, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454748

RESUMO

Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.

5.
Metab Eng ; 86: 78-88, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260817

RESUMO

Combinatorial library-based metabolic engineering approaches allow lower cost and faster strain development. We developed a genetic toolbox EXPRESSYALI for combinatorial engineering of the oleaginous yeast Yarrowia lipolytica. The toolbox enables consecutive rounds of engineering, where up to three combinatorially assembled gene expression cassettes can be integrated into each yeast clone per round. The cassettes are integrated into distinct intergenic sites or an open reading frame of a target gene if a simultaneous gene knockout is desired. We demonstrate the application of the toolbox by optimizing the Y. lipolytica to produce the red beet color betanin via six consecutive rounds of genome editing and screening. The library size varied between 24 and 360. Library screening was facilitated by automated color-based colony picking. In the first round, betanin pathway genes were integrated, resulting in betanin titer of around 20 mg/L. Through the following five consecutive rounds, additional biosynthetic genes were integrated, and the precursor supply was optimized, resulting in a titer of 70 mg/L. Three beta-glucosidases were deleted to prevent betanin deglycosylation, which led to a betanin titer of 130 mg/L in a small scale and a titer of 1.4 g/L in fed-batch bioreactors. The EXPRESSYALI toolbox can facilitate metabolic engineering efforts in Y. lipolytica (available via AddGene Cat. Nr. 212682-212704, Addgene kit ID # 1000000245).

6.
New Phytol ; 241(4): 1435-1446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997699

RESUMO

Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.


Assuntos
Fotossíntese , Respiração , Temperatura , Escuridão , Estações do Ano , Folhas de Planta
7.
Opt Lett ; 49(20): 5807-5810, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404543

RESUMO

Mid-infrared (MIR) gain materials are of great significance for the development of MIR tunable fiber lasers. Herein, for the first time, to the best of our knowledge, it is found that Ga2Se3 nanocrystals distributed in chalcogenide glass ceramics can provide new tetrahedral-coordinated sites that can be used to activate ultrabroadband MIR emissions of divalent transition metal ions, such as Co2+. Under the excitation of a 1550 nm diode laser, the transparent Ge-Ga-Se glass ceramic embedded with Co2+: Ga2Se3 nanocrystals shows an intense 2.5-5.5 µm ultrabroadband emission. The peak wavelength is located at ∼4.2 µm and the full width at half maximum exceeds 2 µm. Such emission properties, originating from the dual lattice sites of Ga3+ ions, are superior to those of transparent chalcogenide glass ceramics embedded with Co2+: ZnSe nanocrystals. Moreover, the gas detection system built based on the glass ceramic shows a sensitivity of 45.9 ppm for butane gas. Therefore, the chalcogenide glass ceramics embedded with active Co2+: Ga2Se3 nanocrystals have great potential in MIR tunable fiber lasers and gas sensing.

8.
J Nat Prod ; 87(5): 1321-1329, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38647518

RESUMO

Ansamycins, represented by the antituberculosis drug rifamycin, are an important family of natural products. To obtain new ansamycins, Streptomyces rapamycinicus IMET 43975 harboring an ansamycin biosynthetic gene cluster was fermented in a 50 L scale, and subsequent purification work led to the isolation of five known and four new analogues, where hygrocin W (2) belongs to benzoquinonoid ansamycins, and the other three hygrocins, hygrocins X-Z (6-8), are new seco-hygrocins. The structures of ansamycins (1-8) were determined by the analysis of spectroscopic (1D/2D NMR and ECD) and MS spectrometric data. The Baeyer-Villiger enzyme which catalyzed the ester formation in the ansa-ring was confirmed through in vivo CRISPR base editing. The discovery of these compounds further enriches the structural diversity of ansamycins.


Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/química , Estrutura Molecular , Rifabutina/análogos & derivados , Rifabutina/química , Rifabutina/farmacologia , Família Multigênica , Rifamicinas/química , Rifamicinas/farmacologia
9.
Nature ; 553(7688): 313-318, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29320473

RESUMO

Although 'active' surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, 'patchy' structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

10.
Nutr Metab Cardiovasc Dis ; 34(7): 1649-1659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749785

RESUMO

BACKGROUND AND AIMS: This study aimed to explore potential hub genes and pathways of plaque vulnerability and to investigate possible therapeutic targets for acute coronary syndrome (ACS). METHODS AND RESULTS: Four microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene coexpression networks (WGCNA) and immune cell infiltration analysis (IIA) were used to identify the genes for plaque vulnerability. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Disease Ontology, Gene Ontology annotation and protein-protein interaction (PPI) network analyses were performed to explore the hub genes. Random forest and artificial neural networks were constructed for validation. Furthermore, the CMap and Herb databases were employed to explore possible therapeutic targets. A total of 168 DEGs with an adjusted P < 0.05 and approximately 1974 IIA genes were identified in GSE62646. Three modules were detected and associated with CAD-Class, including 891 genes that can be found in GSE90074. After removing duplicates, 114 hub genes were used for functional analysis. GO functions identified 157 items, and 6 pathways were enriched for the KEGG pathway at adjusted P < 0.05 (false discovery rate, FDR set at < 0.05). Random forest and artificial neural network models were built based on the GSE48060 and GSE34822 datasets, respectively, to validate the previous hub genes. Five genes (GZMA, GZMB, KLRB1, KLRD1 and TRPM6) were selected, and only two of them (GZMA and GZMB) were screened as therapeutic targets in the CMap and Herb databases. CONCLUSION: We performed a comprehensive analysis and validated GZMA and GZMB as a target for plaque vulnerability, which provides a therapeutic strategy for the prevention of ACS. However, whether it can be used as a predictor in blood samples requires further experimental verification.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Placa Aterosclerótica , Mapas de Interação de Proteínas , Humanos , Síndrome Coronariana Aguda/genética , Síndrome Coronariana Aguda/terapia , Redes Neurais de Computação , Ruptura Espontânea , Predisposição Genética para Doença , Transdução de Sinais , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Terapia de Alvo Molecular , Marcadores Genéticos , Fenótipo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia
11.
Ecotoxicol Environ Saf ; 279: 116470, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772147

RESUMO

Several studies have suggested an association between exposure to various metals and the onset of type 2 diabetes (T2D). However, the results vary across different studies. We aimed to investigate the associations between serum metal concentrations and the risk of developing T2D among 8734 participants using a prospective cohort study design. We utilized inductively coupled plasmamass spectrometry (ICP-MS) to assess the serum concentrations of 27 metals. Cox regression was applied to calculate the hazard ratios (HRs) for the associations between serum metal concentrations on the risk of developing T2D. Additionally, 196 incident T2D cases and 208 healthy control participants were randomly selected for serum metabolite measurement using an untargeted metabolomics approach to evaluate the mediating role of serum metabolite in the relationship between serum metal concentrations and the risk of developing T2D with a nested casecontrol study design. In the cohort study, after Bonferroni correction, the serum concentrations of zinc (Zn), mercury (Hg), and thallium (Tl) were positively associated with the risk of developing T2D, whereas the serum concentrations of manganese (Mn), molybdenum (Mo), barium (Ba), lutetium (Lu), and lead (Pb) were negatively associated with the risk of developing T2D. After adding these eight metals, the predictive ability increased significantly compared with that of the traditional clinical model (AUC: 0.791 vs. 0.772, P=8.85×10-5). In the nested casecontrol study, a machine learning analysis revealed that the serum concentrations of 14 out of 1579 detected metabolites were associated with the risk of developing T2D. According to generalized linear regression models, 7 of these metabolites were significantly associated with the serum concentrations of the identified metals. The mediation analysis showed that two metabolites (2-methyl-1,2-dihydrophthalazin-1-one and mestranol) mediated 46.81% and 58.70%, respectively, of the association between the serum Pb concentration and the risk of developing T2D. Our study suggested that serum Mn, Zn, Mo, Ba, Lu, Hg, Tl, and Pb were associated with T2D risk. Two metabolites mediated the associations between the serum Pb concentration and the risk of developing T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Metais , Humanos , Diabetes Mellitus Tipo 2/sangue , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , China , Metais/sangue , Adulto , Idoso , Poluentes Ambientais/sangue , Estudos de Coortes , Metabolômica , Estudos de Casos e Controles , Tálio/sangue , Exposição Ambiental/estatística & dados numéricos , População do Leste Asiático
12.
J Stroke Cerebrovasc Dis ; 33(1): 107478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952310

RESUMO

OBJECTIVES: Alkaline phosphatase (ALP) catalyzes the hydrolysis of pyrophosphate and facilitates vascular calcification. We aimed at investigating serum ALP levels in intracerebral hemorrhage (ICH) patients and ascertaining its relationship to severity and prognosis. METHODS: Serum ALP levels from 148 patients and 148 healthy controls were detected. Glasgow coma scale (GCS) score and hematoma volume at admission were recorded to evaluate hemorrhagic severity. Modified Rankin Scale (mRS) score > 2 at 90 days after onset was judged as a poor prognosis. RESULTS: Serum ALP levels in patients with ICH were substantially elevated compared with healthy controls, and were significantly related to hematoma volume and GCS score. Serum ALP levels significantly distinguished ICH patients at risk for unfavorable prognosis. Serum ALP levels > 78.5 U/L in ICH patients may indicated a unfavorable prognosis with 69.1 % sensitivity and 83.6 % specificity, and served as an independent predictor for unfavorable prognosis. CONLUSIONS: Elevated serum ALP levels were intimately connected with increased severity and 90-day unfavorable prognosis in patients with ICH. Serum ALP could be a potential biomarker for severity and prognosis of ICH.


Assuntos
Fosfatase Alcalina , Hemorragia Cerebral , Humanos , Biomarcadores , Hemorragia Cerebral/diagnóstico , Hematoma , Prognóstico
13.
Int Heart J ; 65(2): 254-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556335

RESUMO

To date, whether there is any causal relationship between dilated cardiomyopathy (DCM) and the changes in the levels/expression of immune cells/cytokines is still unclear. This study aimed to investigate the causal relationship between the levels of various types of immune cells/cytokines and DCM. Herein, two-sample Mendelian randomization (MR) (TSMR) using R software was conducted. Single nucleotide polymorphisms (SNPs) related to the levels of various types of immune cells/cytokines and DCM were screened based on the genome-wide association studies (GWAS) obtained from open-source databases. The TSMR was conducted using inverse variance weighted (IVW), method, MR-Egger regression, weighted median method, and simple estimator based on mode to explore the causal association between the levels of each immune cell/cytokine and DCM. Sensitivity analysis was conducted using MR-Egger regression and a leave-one-out sensitivity test. A total of 1816 SNPs related to host immune status and DCM were identified. The IVW results showed a relationship between DCM and the circulating levels of basophils/eosinophils, total eosinophils-basophils, lymphocytes, and C-reactive protein (CRP). Increased lymphocytes levels (odds ratio (OR) = 0.91, 95% confidence interval (CI): 0.84-0.97, P = 0.005) were seen as protective against DCM, whereas increased basophil (OR = 1.18, 95% CI: 1.04-1.33, P = 0.022), eosinophil (OR = 1.1, 95% CI: 1.03-1.17, P = 0.007), eosinophil-basophil (OR = 1.09, 95% CI: 1.02-1.17, P = 0.014), and CRP (OR = 1.1, 95% CI: 1.03-1.18, P = 0.013) levels were associated with an increased risk of DCM. These analyses revealed that there may be a relationship between immune cells/select cytokine status and the onset of DCM. Future studies are required to further validate these outcomes in animal models and clinical trials.


Assuntos
Cardiomiopatia Dilatada , Animais , Cardiomiopatia Dilatada/genética , Estudo de Associação Genômica Ampla , Proteína C-Reativa , Causalidade , Citocinas
14.
J Am Chem Soc ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757911

RESUMO

Transfer of asymmetry from the molecular system to the other distinct system requires appropriate chemical interactions. Here, we show how the CH-π interaction, one of the weakest hydrogen bonds, can be applied to transfer the asymmetry from π-conjugated chiral molecules to the assemblies of plasmonic Ag nanoparticles, where the aliphatic chains of chiral molecules and the polystyrene chains grafted on Ag nanoparticles are served as the hydrogen donor and acceptor, respectively. The optical asymmetry g-factor of the chiral assemblies of plasmonic nanoparticles is strongly dependent on the molecular weight of the polystyrene ligand, the core structure of the molecule, and the aliphatic chain length of the chiral molecule. Importantly, we explore a molecular mixing strategy to enhance the asymmetry g-factor of chiral molecular assemblies, which consequently promotes the g-factor of chiral plasmonics efficiently, reaching a high value of ∼0.05 under optimal conditions. Overall, we rationalize the chirality transfer from chiral molecules to inorganic nanoparticles, providing the guidance for structural design of chiral nanocomposites with a high g-factor.

15.
J Am Chem Soc ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022979

RESUMO

In this work, we show how the kinetics of molecular self-assembly can be coupled with the kinetics of the colloidal self-assembly of inorganic nanoparticles, which in turn drives the formation of several distinct hierarchically assembled tubular nanocomposites with lengths over tens of micrometers. These colloidal nanoparticles primarily serve as "artificial histones," around which the as-assembled supramolecular fibrils are wound into deeply kinetically trapped single-layered nanotubes, which leads to the formation of tubular nanocomposites that are resistant to supramolecular transformation thermally. Alternatively, when these nanoparticles are aggregated prior to the event of molecular self-assembly, these as-formed nanoparticle "oligomers" would be encapsulated into the thermodynamically favored double-layer supramolecular nanotubes, which enables the non-close-packing of nanoparticles inside the nanotubes and results in the nanoparticle superlattices with an open channel. Furthermore, increasing the amounts of nanoparticles enables the assembly of nanoparticles into pseudohexagonal superlattices at the external surface in a sequential fashion, which ultimately drives the formation of triple-layered hierarchically assembled tubular nanocomposites. Importantly, the sense of helicity transfers from the supramolecular nanotubes to the pseudo nanoparticle superlattices with a chiral vector of (2, 9). Our findings represent a strategy for controlling the hierarchical assembly bridging supramolecular chemistry to the inorganic solids to realize the complexity by design.

16.
J Am Chem Soc ; 145(31): 17274-17283, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493589

RESUMO

Manipulation of the chirality at all scales has a cross-disciplinary importance and may address key challenges at the heart of physical sciences. One critical question in this field is how the chirality of one entity can be transferred to the asymmetry of another entity. Here, we find that small molecules play a crucial role in the chirality transfer from chiral organic molecules to CdSe/CdS nanorods, where the handedness of the nanorod assemblies either agrees or disagrees with that of the molecular assemblies, leading to the positive or inverse chirality transfer. The assembling mode of nanorods on the molecular assemblies, where the nanorods are either lying or standing, is closely associated with the handedness of the nanorod assemblies, resulting in opposite chirality. Furthermore, we have found that circularly polarized emission from chiral assemblies of nanorods is dependent on molecular additives. The promoted luminescence dissymmetry factor (glum) of the nanocomposites with a high value of ∼0.3 could be attained under optimal conditions.

17.
J Am Chem Soc ; 145(30): 16538-16547, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466049

RESUMO

Solid-electrolyte interphases (SEIs) in advanced rechargeable batteries ensure reversible electrode reactions at extreme potentials beyond the thermodynamic stability limits of electrolytes by insulating electrons while allowing the transport of working ions. Such selective ion transport occurs naturally in biological cell membranes as a ubiquitous prerequisite of many life processes and a foundation of biodiversity. In addition, cell membranes can selectively open and close the ion channels in response to external stimuli (e.g., electrical, chemical, mechanical, and thermal), giving rise to "gating" mechanisms that help manage intracellular reactions. We wondered whether the chemistry and structure of SEIs can mimic those of cell membranes, such that ion gating can be replicated. That is, can SEIs realize a reversible switching between two electrochemical behaviors, i.e., the ion intercalation chemistry of batteries and the ion adsorption of capacitors? Herein, we report such SEIs that result in thermally activated selective ion transport. The function of open/close gate switches is governed by the chemical and structural dynamics of SEIs under different thermal conditions, with precise behaviors as conducting and insulating interphases that enable battery and capacitive processes within a finite temperature window. Such an ion gating function is synergistically contributed by Arrhenius-activated ion transport and SEI dissolution/regrowth. Following the understanding of this new mechanism, we then develop an electrochemical method to heal the SEI layer in situ. The knowledge acquired in this work reveals the possibility of hitherto unknown biomimetic properties of SEIs, which will guide us to leverage such complexities to design better SEIs for future battery chemistries.

18.
Plant Cell Environ ; 46(9): 2827-2840, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278611

RESUMO

How root respiration acclimates to global warming remains unclear, especially in subtropical forests that play a key role in the global carbon budget. In a large-scale in situ soil warming experiment, the occurrence of, and mechanisms controlling over, the acclimation of fine-root respiration of Cunninghamia lanceolata during the fourth year of warming were investigated. Specific respiration rates (at reference temperature of 20°C; SRR20 ) were measured with exogenous glucose addition, uncoupler addition, or no addition, and root morphological and chemical traits were also measured. Warming decreased SRR20 by 18.4% only during summer, indicating partial thermal acclimation of fine-root respiration under warming. Warming did not change fine-root N concentration, showing no possible enzyme limitation on respiration. Warming decreased root soluble sugar/starch ratio in summer, and glucose addition increased respiration only under warming, indicating a warming-induced substrate limitation on respiration. Uncoupler addition also stimulated respiration only under warming, showing a warming-induced adenylate limitation on respiration. These findings suggest that thermal acclimation of root respiration in subtropical forests, which is at least partially constrained by substrate and adenylate use, is conducive to reducing ecosystem carbon emissions and mitigating the positive feedback between atmospheric CO2 and climate warming.


Assuntos
Ecossistema , Árvores , Solo , Temperatura , Glucose , Aquecimento Global , Respiração , Carbono
19.
Glob Chang Biol ; 29(14): 4081-4093, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096422

RESUMO

It is widely accepted that phosphorus (P) limits microbial metabolic processes and thus soil organic carbon (SOC) decomposition in tropical forests. Global change factors like elevated atmospheric nitrogen (N) deposition can enhance P limitation, raising concerns about the fate of SOC. However, how elevated N deposition affects the soil priming effect (PE) (i.e., fresh C inputs induced changes in SOC decomposition) in tropical forests remains unclear. We incubated soils exposed to 9 years of experimental N deposition in a subtropical evergreen broadleaved forest with two types of 13 C-labeled substrates of contrasting bioavailability (glucose and cellulose) with and without P amendments. We found that N deposition decreased soil total P and microbial biomass P, suggesting enhanced P limitation. In P unamended soils, N deposition significantly inhibited the PE. In contrast, adding P significantly increased the PE under N deposition and by a larger extent for the PE of cellulose (PEcellu ) than the PE of glucose (PEglu ). Relative to adding glucose or cellulose solely, adding P with glucose alleviated the suppression of soil microbial biomass and C-acquiring enzymes induced by N deposition, whereas adding P with cellulose attenuated the stimulation of acid phosphatase (AP) induced by N deposition. Across treatments, the PEglu increased as C-acquiring enzyme activity increased, whereas the PEcellu increased as AP activity decreased. This suggests that P limitation, enhanced by N deposition, inhibits the soil PE through varying mechanisms depending on substrate bioavailability; that is, P limitation regulates the PEglu by affecting soil microbial growth and investment in C acquisition, whereas regulates the PEcellu by affecting microbial investment in P acquisition. These findings provide new insights for tropical forests impacted by N loading, suggesting that expected changes in C quality and P limitation can affect the long-term regulation of the soil PE.


Assuntos
Carbono , Solo , Solo/química , Nitrogênio/análise , Fósforo , Florestas , Microbiologia do Solo , Glucose
20.
Biotechnol Bioeng ; 120(8): 2186-2198, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37428554

RESUMO

Genome-scale metabolic models and flux balance analysis (FBA) have been extensively used for modeling and designing bacterial fermentation. However, FBA-based metabolic models that accurately simulate the dynamics of coculture are still rare, especially for lactic acid bacteria used in yogurt fermentation. To investigate metabolic interactions in yogurt starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, this study built a dynamic metagenome-scale metabolic model which integrated constrained proteome allocation. The accuracy of the model was evaluated by comparing predicted bacterial growth, consumption of lactose and production of lactic acid with reference experimental data. The model was then used to predict the impact of different initial bacterial inoculation ratios on acidification. The dynamic simulation demonstrated the mutual dependence of S. thermophilus and L. d. bulgaricus during the yogurt fermentation process. As the first dynamic metabolic model of the yogurt bacterial community, it provided a foundation for the computer-aided process design and control of the production of fermented dairy products.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Iogurte/microbiologia , Metagenoma , Lactobacillus delbrueckii/genética , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA