Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(22): 4521-4527, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752482

RESUMO

Ten azaphilones including one pair of new epimers and three new ones, penineulones A-E (1-5) with the same structural core of angular deflectin, were obtained from a deep-sea derived Penicillium sp. SCSIO41030 fermented on a liquid medium. Their structures including absolute configurations were elucidated using chiral-phase HPLC analysis, extensive NMR spectroscopic and HRESIMS data, ECD and NMR calculations, and by comparing NMR data with literature data. Biological assays showed that the azaphilones possessed no antitumor and anti-viral (HSV-1/2) activities at concentrations of 5.0 µM and 20 µM, respectively. In addition, azaphilones 8 and 9 showed neuroprotective effects against Aß25-35-induced neurotoxicity in primary cultured cortical neurons at a concentration of 10 µM. Azaphilones 8 and 9 dramatically promoted axonal regrowth against Aß25-35-induced axonal atrophy. Our study indicated that azaphilones could be promising lead compounds for neuroprotection.


Assuntos
Benzopiranos , Fármacos Neuroprotetores , Penicillium , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Animais , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Humanos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/química , Estrutura Molecular
2.
J Nat Prod ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687877

RESUMO

Fungal linear polyketides, such as α-pyrones with a 6-alkenyl chain, have been a rich source of biologically active compounds. Two new (1 and 2) and four known (3-6) 6-alkenylpyrone polyketides were isolated from a marine-derived strain of the fungus Arthrinium arundinis. Their structures were determined based on extensive spectroscopic analysis. The biosynthetic gene cluster (alt) for alternapyrones was identified from A. arundinis ZSDS-F3 and validated by heterologous expression in Aspergillus nidulans A1145 ΔSTΔEM, which revealed that the cytochrome P450 monooxygenase Alt2' could convert the methyl group 26-CH3 to a carboxyl group to produce 4 from 3. Another cytochrome P450 monooxygenase, Alt3', catalyzed successive hydroxylation, epoxidation, and oxidation steps to produce 1, 2, 5, and 6 from 4. Alternapyrone G (1) not only suppressed M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 microglia but also stimulated dendrite regeneration and neuronal survival after Aß treatment, suggesting alternapyrone G may be utilized as a privileged scaffold for Alzheimer's disease drug discovery.

3.
BMC Health Serv Res ; 24(1): 825, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020336

RESUMO

BACKGROUND: Federally Qualified Health Centers (FQHCs) are a critical source of care for medically underserved populations and often serve as medical homes for individuals with serious mental illness (SMI). Many FQHCs provide mental health services and could facilitate access to mental health treatment within and outside of FQHCs. This study compared mental health care utilization and acute care events for adult Medicaid enrollees with SMI who receive care at Federally Qualified Health Centers (FQHCs) vs. other settings. METHODS: This study used the 2015-2016 Massachusetts All-Payer Claims Database to examine outpatient mental health care and acute care events for 32,330 Medicaid adults, ages 18-64 and with major depressive, bipolar, or schizophrenia spectrum disorders (SSD), who resided in FQHC service areas and received care from FQHCs vs. other settings in 2015. Multivariable linear regressions assessed associations between receiving care at FQHCs and outpatient mental health visits, psychotropic medication fills, and acute care events in 2016. RESULTS: There were 8,887 (27.5%) adults in the study population (N = 32,330) who had at least one FQHC visit in 2015. Those who received care at FQHCs were more likely to have outpatient mental health visits (73.3% vs. 71.2%) and psychotropic medication fills (73.2% vs. 69.0%, both p < .05), including antidepressants among those with depressive disorders and antipsychotics among those with SSD. They were more likely to have ED visits (74.0% vs. 68.7%), but less likely to be hospitalized (27.8% vs. 31.9%, both p < .05). However, there was no significant difference in the likelihood of having an acute psychiatric hospitalization (9.5% vs. 9.8%, p = .35). CONCLUSIONS: Among Medicaid enrollees with SMIs who had access to care at FQHCs, those receiving care at FQHCs were more likely to have outpatient mental health visits and psychotropic medication fills, with lower rates of hospitalization, suggesting potentially improved quality of outpatient care. Higher ED visit rates among those receiving care at FQHCs warrant additional investigation.


Assuntos
Medicaid , Transtornos Mentais , Serviços de Saúde Mental , Humanos , Estados Unidos , Adulto , Medicaid/estatística & dados numéricos , Feminino , Masculino , Pessoa de Meia-Idade , Serviços de Saúde Mental/estatística & dados numéricos , Adolescente , Adulto Jovem , Transtornos Mentais/terapia , Massachusetts , Qualidade da Assistência à Saúde/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos
4.
Mar Drugs ; 22(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057433

RESUMO

Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, its potential effects on NDs remain unexplored. In LPS-induced BV-2 microglia, we found that Pol reduced the generation of NO and ROS and revealed inhibited expression of iNOS, COX-2, and inflammatory factors such as IL-6, TNF-α, and 1L-1ß by Pol using qRT-PCR and Western blotting. These effects were found to be associated with the suppression of the NF-κB signaling pathway. Moreover, we evaluated the potential synergistic effects of aspergillusidone G (Asp G) when combined with Pol. Remarkably, co-treatment with low doses of Asp G enhanced the NO inhibition by Pol from approximately 30% to 80% in LPS-induced BV2 microglia, indicating a synergistic anti-inflammatory effect. A bioinformatics analysis suggested that the synergistic mechanism of Asp G and Pol might be attributed to several targets, including NFκB1, NRF2, ABL1, TLR4, and PPARα. These findings highlight the anti-neuroinflammatory properties of Pol and its enhanced efficacy when combined with Asp G, proposing a novel therapeutic strategy for managing neuroinflammation in NDs.


Assuntos
Anti-Inflamatórios , Carnosina , Lipopolissacarídeos , Microglia , NF-kappa B , Compostos Organometálicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Carnosina/farmacologia , Carnosina/análogos & derivados , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Compostos Organometálicos/farmacologia , Compostos de Zinco/farmacologia , Biologia Computacional , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Sinergismo Farmacológico , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
5.
Mar Drugs ; 21(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37504929

RESUMO

Neuroinflammation induced by microglial and astrocyte polarizations may contribute to neurodegeneration and cognitive impairment. Omega (n)-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory and neuroprotective effects, but conflicting results were reported after different n-3 PUFA treatments. This study examined both the change in glial polarizations in ageing rats and the differential effects of two omega-3 PUFAs. The results showed that both PUFAs improved spatial memory in ageing rats, with docosahexaenoic acid (DHA) being more effective than eicosapentaenoic acid (EPA). The imbalance between microglial M1/M2 polarizations, such as up-regulating ionized calcium binding adaptor molecule 1 (IBA1) and down-regulating CD206 and arginase-1 (ARG-1) was reversed in the hippocampus by both n-3 PUFAs, while the DHA effect on CD206 was stronger. Astrocyte A1 polarization presented increasing S100B and C3 but decreasing A2 parameter S100A10 in the ageing brain, which were restored by both PUFAs, while DHA was more effective on S100A10 than EPA. Consistent with microglial M1 activation, the concentration of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 were significantly increased, which were attenuated by DHA, while EPA only suppressed IL-6. In correlation with astrocyte changes, brain-derived neurotrophic factor precursor was increased in ageing rats, which was more powerfully down-regulated by DHA than EPA. In summary, enhanced microglial M1 and astrocytic A1 polarizations may contribute to increased brain pro-inflammatory cytokines, while DHA was more powerful than EPA to alleviate ageing-associated neuroimmunological changes, thereby better-improving memory impairment.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Ômega-3 , Ratos , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Interleucina-6 , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Citocinas/metabolismo , Fator de Necrose Tumoral alfa , Disfunção Cognitiva/tratamento farmacológico , Envelhecimento
6.
Phytother Res ; 37(11): 5017-5040, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491018

RESUMO

The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.


Assuntos
Doença de Alzheimer , Saponinas , Triterpenos , Humanos , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neuroproteção , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
7.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628955

RESUMO

Tilapia skin is a great source of collagen. Here, we aimed to isolate and identify the peptides responsible for combating dry eye disease (DED) in tilapia skin peptides (TSP). In vitro cell DED model was used to screen anti-DED peptides from TSP via Sephadex G-25 chromatography, LC/MS/MS, and in silico methods. The anti-DED activity of the screened peptide was further verified in the mice DED model. TSP was divided into five fractions (TSP-I, TSP-II, TSP-III, TSP-IV, and TSP-V), and TSP-II exerted an effective effect for anti-DED. A total of 131 peptides were identified using LC/MS/MS in TSP-II, and NGGPSGPR (NGG) was screened as a potential anti-DED fragment in TSP-II via in silico methods. In vitro, NGG restored cell viability and inhibited the expression level of Cyclooxygenase-2 (COX-2) protein in Human corneal epithelial cells (HCECs) induced by NaCl. In vivo, NGG increased tear production, decreased tear ferning score, prevented corneal epithelial thinning, alleviated conjunctival goblet cell loss, and inhibited the apoptosis of corneal epithelial cells in DED mice. Overall, NGG, as an anti-DED peptide, was successfully identified from TSP, and it may be devoted to functional food ingredients or medicine for DED.


Assuntos
Síndromes do Olho Seco , Tilápia , Humanos , Animais , Camundongos , Espectrometria de Massas em Tandem , Síndromes do Olho Seco/tratamento farmacológico , Peptídeos/farmacologia , Pele , Modelos Animais de Doenças
8.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298878

RESUMO

Euryale ferox Salisb. (prickly water lily) is the only extent of the genus Euryale that has been widely distributed in China, India, Korea, and Japan. The seeds of E. ferox (EFS) have been categorized as superior food for 2000 years in China, based on their abundant nutrients including polysaccharides, polyphenols, sesquineolignans, tocopherols, cyclic dipeptides, glucosylsterols, cerebrosides, and triterpenoids. These constituents exert multiple pharmacological effects, such as antioxidant, hypoglycemic, cardioprotective, antibacterial, anticancer, antidepression, and hepatoprotective properties. There are very few summarized reports on E. ferox, albeit with its high nutritional value and beneficial activities. Therefore, we collected the reported literature (since 1980), medical classics, database, and pharmacopeia of E. ferox, and summarized the botanical classification, traditional uses, phytochemicals, and pharmacological effects of E. ferox, which will provide new insights for further research and development of EFS-derived functional products.


Assuntos
Medicina Tradicional Chinesa , Nymphaeaceae , Nymphaeaceae/química , Antioxidantes/farmacologia , Tocoferóis , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
J Neuroinflammation ; 19(1): 39, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130930

RESUMO

BACKGROUND: Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases. METHODS: Here, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 µg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab. RESULTS: BTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25-100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles. CONCLUSIONS: The present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance.


Assuntos
Microbioma Gastrointestinal , Peixe-Zebra , 4-Butirolactona/análogos & derivados , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Cloreto de Alumínio/toxicidade , Animais , Cognição , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Estresse Oxidativo , Peixe-Zebra/metabolismo
10.
Org Biomol Chem ; 21(1): 153-162, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472095

RESUMO

The disordered tubulin C-terminal tail (CTT), which possesses a higher degree of heterogeneity, is the target for the interaction of many proteins and cellular components. Compared to the seven well-described binding sites of microtubule-targeting agents (MTAs) that localize on the globular tubulin core, tubulin CTT is far less explored. Therefore, tubulin CTT can be regarded as a novel site for the development of MTAs with distinct biochemical and cell biological properties. Here, we designed and synthesized linear and cyclic peptides containing multiple arginines (RRR), which are complementary to multiple acidic residues in tubulin CTT. Some of them showed moderate induction and promotion of tubulin polymerization. The most potent macrocyclic compound 1f was found to bind to tubulin CTT and thus exert its bioactivity. Such RRR containing compounds represent a starting point for the discovery of tubulin CTT-targeting agents with therapeutic potential.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/metabolismo
11.
Mar Drugs ; 20(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447931

RESUMO

This study aimed to explore the mechanism of fucoidan in chronic kidney disease (CKD)-triggered cognitive dysfunction. The adenine-induced ICR strain CKD mice model was applied, and RNA-Seq was performed for differential gene analysis between aged-CKD and normal mice. As a result, fucoidan (100 and 200 mg kg-1) significantly reversed adenine-induced high expression of urea, uric acid in urine, and creatinine in serum, as well as the novel object recognition memory and spatial memory deficits. RNA sequencing analysis indicated that oxidative and inflammatory signaling were involved in adenine-induced kidney injury and cognitive dysfunction; furthermore, fucoidan inhibited oxidative stress via GSK3ß-Nrf2-HO-1 signaling and ameliorated inflammatory response through regulation of microglia/macrophage polarization in the kidney and hippocampus of CKD mice. Additionally, we clarified six hallmarks in the hippocampus and four in the kidney, which were correlated with CKD-triggered cognitive dysfunction. This study provides a theoretical basis for the application of fucoidan in the treatment of CKD-triggered memory deficits.


Assuntos
Disfunção Cognitiva , Laminaria , Insuficiência Renal Crônica , Adenina , Idoso , Animais , Disfunção Cognitiva/tratamento farmacológico , Feminino , Humanos , Masculino , Transtornos da Memória , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo , Polissacarídeos , Insuficiência Renal Crônica/tratamento farmacológico
12.
Phytother Res ; 36(9): 3490-3504, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35844057

RESUMO

Eleutherococcus senticosus is a medicinal plant widely used in traditional medicine and edible remedies with effects on anti-fatigue, sleep improvement, and memory enhancement. Recently, the application of E. senticosus to neurological disorders has been a focus. However, its overall pharmacological effect on neural diseases and relevant mechanisms are needed in an in-depth summary. In this review, the traditional uses and the therapeutic effect of E. senticosus on the treatment of fatigue, depression, Alzheimer's disease, Parkinson's disease, and cerebral ischemia were summarized. In addition, the underlying mechanisms involved in the anti-oxidative damage, anti-inflammation, neurotransmitter modulation, improvement of neuronal growth, and anti-apoptosis were discussed. This review will accelerate the understanding of the neuroprotective effects brought from the E. senticosus, and impetus its development as a phytotherapy agent against neurological disorders.


Assuntos
Eleutherococcus , Doenças do Sistema Nervoso , Plantas Medicinais , Anti-Inflamatórios/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
Brain Behav Immun ; 96: 143-153, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052364

RESUMO

Depression is associated with abnormal lipid metabolism, and omega (n)-3 polyunsaturated fatty acids (PUFAs) can effectively treat depression. However, mechanism of lipid metabolism involved in the depressive attenuation remains poorly understood. Olfactory bulbectomy (OB)-induced changes in animal behavior and physiological functions are similar to those observed in depressed patients. Therefore, the present study used wild type (WT) and Fat-1 mice with or without OB to explore whether endogenous n-3 PUFA treatment of depression was through rectifying lipid metabolism, and to discover the possible lipid metabolic pathways. In WT mice, OB enhanced locomotor activity associated with up-regulation of lipid metabolites in the serum, such as phosphatidylcholines, L-a-glutamyl-L-Lysine and coproporphyrinogen III (Cop), which were involved in anti-inflammatory lipid metabolic pathways. OB also increased microglia activation marker CD11b and pro-inflammatory cytokines in the hippocampus. In one of the lipid pathways, increased Cop was significantly correlated with the hyper-activity of the OB mice. These OB-induced changes were markedly attenuated by endogenous n-3 PUFAs in Fat-1 mice. Additionally, increased expressions of anti-inflammatory lipid genes, such as fatty acid desaturase (Fads) and phospholipase A2 group VI (Pla2g6), were found in the hippocampus of Fat-1 mice compared with WT mice. Furthermore, Cop administration increased the production of pro-inflammatory cytokines and nitric oxide in a microglial cell line BV2. In conclusion, endogenous n-3 PUFAs in Fat-1 mice attenuated abnormal behavior in the depression model through restoration of lipid metabolism and suppression of inflammatory response.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Citocinas , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados , Fosfolipases A2 do Grupo VI , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia
14.
Mar Drugs ; 19(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822458

RESUMO

Microglia M1 phenotype causes HPA axis hyperactivity, neurotransmitter dysfunction, and production of proinflammatory mediators and oxidants, which may contribute to the etiology of depression and neurodegenerative diseases. Eicosapentaenoic acid (EPA) may counteract neuroinflammation by increasing n-3 docosapentaenoic acid (DPA). However, the cellular and molecular mechanisms of DPA, as well as whether it can exert antineuroinflammatory and neuroprotective effects, are unknown. The present study first evaluated DPA's antineuroinflammatory effects in lipopolysaccharide (LPS)-activated BV2 microglia. The results showed that 50 µM DPA significantly decreased BV2 cell viability after 100 ng/mL LPS stimulation, which was associated with significant downregulation of microglia M1 phenotype markers and proinflammatory cytokines but upregulation of M2 markers and anti-inflammatory cytokine. Then, DPA inhibited the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65 pathways, which results were similar to the effects of NF-κB inhibitor, a positive control. Second, BV2 cell supernatant was cultured with differentiated SH-SY5Y neurons. The results showed that the supernatant from LPS-activated BV2 cells significantly decreased SH-SY5Y cell viability and brain-derived neurotrophic factor (BDNF), TrkB, p-AKT, and PI3K expression, which were significantly reversed by DPA pretreatment. Furthermore, DPA neuroprotection was abrogated by BDNF-SiRNA. Therefore, n-3 DPA may protect neurons from neuroinflammation-induced damage by balancing microglia M1 and M2 polarizations, inhibiting microglia-NF-κB and MAPK p38 while activating neuron-BDNF/TrkB-PI3K/AKT pathways.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Microalgas , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Organismos Aquáticos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácidos Graxos Insaturados/química , Humanos , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Phytother Res ; 35(9): 5318-5329, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328653

RESUMO

Neurite outgrowth-induced construction of neural circuits and networks is responsible for memory generalization, consolidation, and retrieval. In this study, we found that the traditional Chinese medicine Pseudostellaria heterophylla promoted neurite regrowth and enhanced cognitive function in normal mice. Further, we orally administered Pseudostellaria heterophylla water extracts (PHE) to ICR mice, and detected heterophyllin B (HET-B), an important cyclopeptide, in the plasma and cerebral cortex. We demonstrated that neurites were significantly elongated after coculturing with HET-B for 4 days. Next, the intraperitoneal injection of HET-B on seven consecutive days in 3-month-old ICR mice significantly enhanced the object recognition memory and object location memory than that in control. Immunohistochemical analysis indicated significantly increased ß3-tubulin-positive neurite density, synaptophysin, and postsynaptic density 95 in the perirhinal cortex and hippocampus after administering HET-B. Furthermore, the concentration of neurotransmitters was measured using HPLC analysis; HET-B significantly increased five-levels of HT in the hippocampus, and decreased metabolites of dopamine, dihydroxyphenylacetic acid, and homovanillic acid, in the prefrontal cortex and hippocampus. Taken together, HET-B induces neurite elongation and neurotransmitter regulation and possibly enhances cognitive memory.


Assuntos
Cognição , Crescimento Neuronal , Plasticidade Neuronal , Peptídeos Cíclicos , Animais , Caryophyllaceae/química , Camundongos , Camundongos Endogâmicos ICR , Neuritos/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia
16.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150824

RESUMO

Clinical evidence indicated that eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) in depression treatment. However, possible mechanisms remain unclear. Here, a chronic unpredictable mild stress (CUMS)-induced model of depression was used to compare EPA and DHA anti-depressant effects. After EPA or DHA feeding, depression-like behavior, brain n-3/n-6 PUFAs profile, serum corticosterone and cholesterol concentration, hippocampal neurotransmitters, microglial and astrocyte related function, as well as neuronal apoptosis and survival signaling pathways were studied. EPA was more effective than DHA to ameliorate CUMS-induced body weight loss, and depression-like behaviors, such as increasing sucrose preference, shortening immobility time and increasing locomotor activity. CUMS-induced corticosterone elevation was reversed by bother fatty acids, while increased cholesterol was only reduced by EPA supplement. Lower hippocampal noradrenaline and 5-hydroxytryptamine concentrations in CUMS rats were also reversed by both EPA and DHA supplement. However, even though CUMS-induced microglial activation and associated increased IL-1ß were inhibited by both EPA and DHA supplement, increased IL-6 and TNF-α levels were only reduced by EPA. Compared to DHA, EPA could improve CUMS-induced suppressive astrocyte biomarkers and associated BDNF-TrkB signaling. Moreover, EPA was more effective than DHA to attenuate CUMS-induced higher hippocampal NGF, GDNF, NF-κB, p38, p75, and bax expressions, but reversed bcl-2 reduction. This study for the first time revealed the mechanisms by which EPA was more powerful than DHA in anti-inflammation, normalizing astrocyte and neurotrophin function and regulating NF-κB, p38 and apoptosis signaling. These findings reveal the different mechanisms of EPA and DHA in clinical depression treatment.


Assuntos
Apoptose , Transtorno Depressivo/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Hipocampo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Estresse Psicológico/complicações , Animais , Comportamento Animal , Transtorno Depressivo/etiologia , Transtorno Depressivo/patologia , Ácido Eicosapentaenoico/farmacologia , Feminino , Hipocampo/patologia , Neuroglia/patologia , Ratos , Ratos Sprague-Dawley
17.
Neuroimmunomodulation ; 26(1): 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699428

RESUMO

OBJECTIVE: Both excitotoxicity and neurotrophin deficiency may contribute to the etiology of depression and neurodegeneration. Astrocytes not only regulate glutamate metabolism and clearance, they also produce neurotrophins in the brain. However, the direct interaction between neurons and astrocytes remains unknown. METHODS: This study evaluated the cellular mechanisms by which astrocyte-conditioned medium (ACM) protects prefrontal cortical neurons from glutamate-induced death by measuring cell viability and morphology as well as mRNA and protein expression of brain-derived neurotrophic factor (BDNF), BDNF receptors, glial cell line-derived neurotrophic factor (GDNF), and the proinflammatory cytokine, tumor necrosis factor (TNF)-α. Neurons and astrocytes were purified from the brains of neonatal 1-day-old Sprague-Dawley rats. ACM was harvested after exposing astrocytes to culture medium containing 100 µM glutamate for 48 h. RESULTS: Glutamate insult (100 µM for 6 h) significantly reduced neuronal cell viability and increased the mRNA expression of BDNF. Glutamate (24 h) decreased neuronal viability and the expression of BDNF, but increased mRNA expression of GFAP, p75 neurotrophin receptor (p75NTR), and TNF-α. ACM pretreatment (2 h) reversed glutamate-decreased cell viability and increased BDNF, but reduced the expression of GDNF, P75NTR, and TNF-α at the mRNA level. Western blotting generally confirmed the mRNA expression following 24 glutamate insults. Furthermore, the glutamate-induced decrease in the protein expression of BDNF and full-length TrkB receptor and increase in pro-BDNF, truncated TrkB isoform 1 receptor, p75NTR, GDNF, and TNF-α were significantly attenuated by ACM pretreatment. CONCLUSIONS: The study demonstrates that ACM exerts neuroprotective effects on cell viability, and this effect is most likely mediated through the modulation of neurotrophin and TNF-α expression.


Assuntos
Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptor trkB/genética , Receptor trkB/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Phytother Res ; 33(4): 1114-1121, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30768735

RESUMO

Two kinds of microglia are known, classical M1 and alternative M2 phenotypes. Amyloid ß (Aß), a critical cause of Alzheimer's disease (AD), promotes M1 microglial polarization, leading to neuroinflammation and neuronal death. M2 microglia play important roles in anti-inflammatory effects, Aß clearance, and memory recovery in AD. Therefore, increasing of M2 microglia is expected to recover from AD. We previously found that naringenin, a blood-brain barrier penetrating compound, decreased Aß deposits and recovers memory function in transgenic AD model mice. Naringenin reportedly showed anti-inflammatory properties. Here, we aim to investigate potential effects of naringenin on microglial polarization and to reveal the underlying mechanisms of Aß reduction. Primary cultured cortical microglia were treated with Aß1-42 , following administration of naringenin. Naringenin remarkably promoted M2 microglia polarization and inhibited Aß1-42 -induced M1 microglia activation. Because microglia reportedly played a critical role in cerebral Aß clearance through Aß degradation enzymes after phagocytosis, we investigated the expression of Aß degradation enzymes, such as neprilysin and insulin degradation enzyme. After naringenin treatment, these Aß degradation enzymes were downregulated in M1 microglia and upregulated in M2 microglia. Taken together, our results showed that naringenin increased Aß degradation enzymes in M2 microglia, probably leading to Aß plaque reduction.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/efeitos dos fármacos , Antagonistas de Estrogênios/uso terapêutico , Flavanonas/química , Microglia/efeitos dos fármacos , Animais , Antagonistas de Estrogênios/farmacologia , Masculino , Camundongos , Camundongos Transgênicos
19.
Molecules ; 24(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487775

RESUMO

Neuroinflammatory microenvironment, regulating neurite regrowth and neuronal survival, plays a critical role in Alzheimer's disease (AD). During neuroinflammation, microglia are activated, inducing the release of inflammatory or anti-inflammatory factors depending on their polarization into classical M1 microglia or alternative M2 phenotype. Therefore, optimizing brain microenvironment by small molecule-targeted microglia polarization and promoting neurite regeneration might be a potential therapeutic strategy for AD. In this study, we found platycodigenin, a naturally occurring triterpenoid, promoted M2 polarization and inhibited M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 and primary microglia. Platycodigenin downregulated pro-inflammatory molecules such as interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6 and nitric oxide (NO), while upregulated anti-inflammatory cytokine IL-10. Further investigation confirmed that platycodigenin inhibited cyclooxygenase-2 (Cox2) positive M1 but increased Ym1/2 positive M2 microglial polarization in primary microglia. In addition, platycodigenin significantly decreased LPS-induced the hyperphosphorylation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65 subunits. Furthermore, the inactivation of peroxisome proliferators-activated receptor γ (PPARγ) induced by LPS was completely ameliorated by platycodigenin. Platycodigenin also promoted neurite regeneration and neuronal survival after Aß treatment in primary cortical neurons. Taken together, our study for the first time clarified that platycodigenin effectively ameliorated LPS-induced inflammation and Aß-induced neurite atrophy and neuronal death.


Assuntos
Microglia/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Saponinas/farmacologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/imunologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Regul Toxicol Pharmacol ; 95: 175-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524465

RESUMO

Ambinine, the major alkaloid of the tuber of Corydalis ambigua var. amurensis, has protective effects on H9C2 myocardial cells. In the present paper, we observed that ambinine demonstrates activities of both anticoagulation and thrombolysis in vitro by significantly degrading the blood clot and delaying the plasma recalcification time (PRT) in a dose-dependent manner (0.5-2 mg/mL). We further studied its safety profile of acute and subacute toxicity by repeated-dose intravenous injection. The median lethal dosage (LD50) of mice given by oral and intravenous administration of ambinine were approximate 800, 41.60 mg/kg, respectively. The acute toxicity research results suggested that compared with an intravenous administration, the oral route is safer to administer ambinine as the promising lead compound for thrombosis. In subacute toxicity research, when mice were given ambinine at doses of 1.40 and 2.10 mg/kg for 7 days by injection, significant alteration of the relative kidney weight, the relative liver weight and serum biochemistry parameters and marked histopathological changes of them were found.


Assuntos
Alcaloides , Anticoagulantes , Corydalis , Fenantridinas , Administração Oral , Alanina Transaminase/sangue , Alcaloides/administração & dosagem , Alcaloides/farmacologia , Alcaloides/toxicidade , Animais , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacologia , Anticoagulantes/toxicidade , Aspartato Aminotransferases/sangue , Coagulação Sanguínea/efeitos dos fármacos , Feminino , Coração/efeitos dos fármacos , Injeções Intravenosas , Rim/efeitos dos fármacos , Rim/patologia , L-Lactato Desidrogenase/sangue , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Fenantridinas/administração & dosagem , Fenantridinas/farmacologia , Fenantridinas/toxicidade , Tubérculos , Ratos , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA