Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 383(6689): 1344-1349, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513017

RESUMO

Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125-base pair DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. We describe an approach that efficiently forms single-copy HACs. It employs a ~750-kilobase construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.


Assuntos
Centrômero , Cromossomos Artificiais Humanos , Epigênese Genética , Humanos , Centrômero/genética , Centrômero/metabolismo , Cromatina/metabolismo , Cromossomos Artificiais Humanos/genética , Cromossomos Artificiais Humanos/metabolismo , Saccharomycetales/genética
2.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37546784

RESUMO

Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125 bp DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. Here, we describe an approach that efficiently forms single-copy HACs. It employs a ~750 kb construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.

3.
Toxicon ; 193: 28-37, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493498

RESUMO

Dichapetalum madagascariense Poir (Dichapetalaceae) is traditionally used to treat bacterial infections, jaundice, urethritis and viral hepatitis in Africa. Its root contains a broad spectrum of biologically active dichapetalins. To evaluate the plant's effect on human MCF-7 cells and its' antibacterial and antiparasitic potentials, we isolated and identified the known dichapetalins A and M from the roots. Both dichapetalins were tested on six bacterial strains (Shigella flexneri, Bacillus cereus, Salmonella paratyphi B, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus) and two parasite strains; Trypanosoma brucei brucei, and Leishmania donovani using the Alamar Blue assay system. Dichapetalins A and M were more potent against B. cereus with IC50 values of 11.15 and 3.15 µg/ml, respectively, compared to the positive control ampicillin (IC50 = 19.50 µg/ml). Dichapetalins A (IC50 = 74.22 µg/ml) and M (IC50 = 72.34 µg/ml) were less active against T. b. brucei, compared to the standard Suramin (IC50 = 4.96 µg/ml). Dichapetalin M showed moderate activity against L. donovani (Amphotericin B: IC50 = 0.21 µg/ml) with an IC50 of 16.80 µg/ml. In human MCF-7 cells expressing the NR1I2 receptor, the activity of dichapetalin M was higher (IC50 = 4.71 µM and 3.95 µM) for 48 and 72 h of treatment, respectively compared to Curcumin with IC50 of 17.49 µM and 12.53 µM for 48 and 72 h of treatment, respectively. Results from in vitro expression studies with qPCR confirmed an antagonistic effect of dichapetalin M on PXR (NR1I2) signaling; supporting the PXR signaling pathway as a possible mode of action of dichapetalin M as predicted by in silico results. These findings confirm previous studies that D. madagascariense can be a source of potential lead compounds for development of novel antibiotic, antiparasitic and anticancer medicines, and provide further insights into the mechanism of action of the dichapetalins.


Assuntos
Antibacterianos , Extratos Vegetais/farmacologia , África , Antibacterianos/farmacologia , Simulação por Computador , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA