RESUMO
The long-term physiological consequences of respiratory viral infections, particularly in the aftermath of the COVID-19 pandemic-termed post-acute sequelae of SARS-CoV-2 (PASC)-are rapidly evolving into a major public health concern1-3. While the cellular and molecular aetiologies of these sequelae are poorly defined, increasing evidence implicates abnormal immune responses3-6 and/or impaired organ recovery7-9 after infection. However, the precise mechanisms that link these processes in the context of PASC remain unclear. Here, with insights from three cohorts of patients with respiratory PASC, we established a mouse model of post-viral lung disease and identified an aberrant immune-epithelial progenitor niche unique to fibroproliferation in respiratory PASC. Using spatial transcriptomics and imaging, we found a central role for lung-resident CD8+ T cell-macrophage interactions in impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Specifically, IFNγ and TNF derived from CD8+ T cells stimulated local macrophages to chronically release IL-1ß, resulting in the long-term maintenance of dysplastic epithelial progenitors and lung fibrosis. Notably, therapeutic neutralization of IFNγ + TNF or IL-1ß markedly improved alveolar regeneration and pulmonary function. In contrast to other approaches, which require early intervention10, we highlight therapeutic strategies to rescue fibrotic disease after the resolution of acute disease, addressing a current unmet need in the clinical management of PASC and post-viral disease.
Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Modelos Animais de Doenças , Pulmão , Macrófagos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Síndrome de COVID-19 Pós-Aguda , Interleucina-1beta/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Nicho de Células-Tronco , Células-Tronco/virologia , Células-Tronco/imunologia , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Fibrose Pulmonar/virologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/imunologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regeneração/imunologia , Alvéolos Pulmonares/virologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologiaRESUMO
Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged AT2 cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 (Activator Protein-1) transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in collagen and elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Assuntos
Envelhecimento , Células Epiteliais Alveolares , Pulmão , Nicho de Células-Tronco , Transcriptoma , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Envelhecimento/genética , Pulmão/metabolismo , Pulmão/patologia , Transcriptoma/genética , Idoso , Pessoa de Meia-Idade , Masculino , Senescência Celular/genética , Perfilação da Expressão Gênica , Feminino , Adulto , Células-Tronco/metabolismoRESUMO
Efferocytosis is a process whereby apoptotic cells are cleared to maintain tissue homeostasis. In the lungs, efferocytosis has been implicated in several acute and chronic inflammatory diseases. A long-standing method to study efferocytosis in vivo is to instill apoptotic cells into the lungs to evaluate macrophage uptake. However, this approach provides nonphysiologic levels of cells to the airspaces, where there is preferential access to the alveolar macrophages. To circumvent this limitation, we developed a new method to study efferocytosis of damaged alveolar type 2 (AT2) epithelial cells in vivo. A reporter mouse that expresses TdTomato in AT2 epithelial cells was injured with influenza (strain PR8) to induce apoptosis of AT2 cells. We were able to identify macrophages that acquire red fluorescence after influenza injury, indicating efferocytosis of AT2 cells. Furthermore, evaluation of macrophage populations led to the surprising finding that lung interstitial macrophages were the primary efferocyte in vivo. In summary, we present a novel finding that the interstitial macrophage, not the alveolar macrophage, primarily mediates clearance of AT2 cells in the lungs after influenza infection. Our method of studying efferocytosis provides a more physiologic approach in evaluating the spatiotemporal dynamics of apoptotic cell clearance in vivo and opens new avenues to study the mechanisms by which efferocytosis regulates inflammation.
Assuntos
Eferocitose , Influenza Humana , Proteína Vermelha Fluorescente , Animais , Camundongos , Humanos , Macrófagos , EpitélioRESUMO
Loss of epithelial integrity, bronchiolarization, and fibroblast activation are key characteristics of idiopathic pulmonary fibrosis (IPF). Prolonged accumulation of basal-like cells in IPF may impact the fibrotic niche to promote fibrogenesis. To investigate their role in IPF, basal cells were isolated from IPF explant and healthy donor lung tissues. Single-cell RNA sequencing was used to assess differentially expressed genes in basal cells. Basal cell and niche interaction was demonstrated with the sLP-mCherry niche labeling system. Luminex assays were used to assess cytokines secreted by basal cells. The role of basal cells in fibroblast activation was studied. Three-dimensional organoid culture assays were used to interrogate basal cell effects on AEC2 (type 2 alveolar epithelial cell) renewal capacity. Perturbation was used to investigate WNT7A function in vitro and in a repetitive bleomycin model in vivo. We found that WNT7A is highly and specifically expressed in basal-like cells. Proteins secreted by basal cells can be captured by neighboring fibroblasts and AEC2s. Basal cells or basal cell-conditioned media activate fibroblasts through WNT7A. Basal cell-derived WNT7A inhibits AEC2 progenitor cell renewal in three-dimensional organoid cultures. Neutralizing antibodies against WNT7A or a small molecule inhibitor of Frizzled signaling abolished basal cell-induced fibroblast activation and attenuated lung fibrosis in mice. In summary, basal cells and basal cell-derived WNT7A are key components of the fibrotic niche, providing a unique non-stem cell function of basal cells in IPF progression and a novel targeting strategy for IPF.
Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Bleomicina/farmacologia , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Transdução de SinaisRESUMO
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Humanos , Idoso , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Envelhecimento , Células-Tronco/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismoRESUMO
The epithelium lining airspaces of the human lung is maintained by regional stem cells, including basal cells of pseudostratified airways and alveolar type 2 (AT2) pneumocytes of the gas-exchange region. Despite effective techniques for long-term preservation of airway basal cells, procedures for efficient preservation of functional epithelial cell types of the distal gas-exchange region are lacking. Here we detail a method for cryobanking of epithelial cells from either mouse or human lung tissue for preservation of their phenotypic and functional characteristics. Flow cytometric profiling, epithelial organoid-forming efficiency, and single-cell transcriptomic analysis were used to compare cells recovered from cryobanked tissue with those of freshly dissociated tissue. AT2 cells within single-cell suspensions of enzymatically digested cryobanked distal lung tissue retained expression of the pan-epithelial marker CD326 and the AT2 cell surface antigen recognized by monoclonal antibody HT II-280, allowing antibody-mediated enrichment and downstream analysis. Isolated AT2 cells from cryobanked tissue were comparable with those of freshly dissociated tissue both in their single-cell transcriptome and their capacity for in vitro organoid formation in three-dimensional cultures. We conclude that the cryobanking method described herein allows long-term preservation of distal human lung tissue for downstream analysis of lung cell function and molecular phenotype and is ideally suited for the creation of an easily accessible tissue resource for the research community.
Assuntos
Células Epiteliais , Pulmão , Humanos , Camundongos , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais Alveolares/metabolismo , FenótipoRESUMO
Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.
Assuntos
Envelhecimento/patologia , Células Epiteliais Alveolares/patologia , Senescência Celular , Fibrose Pulmonar Idiopática/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , MasculinoRESUMO
Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.
Assuntos
Plasticidade Celular , Proliferação de Células/genética , Autorrenovação Celular/genética , Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/genética , Mucosa Respiratória/citologia , Idoso , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Membrana Basal , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Pessoa de Meia-Idade , RNA-Seq , Mucosa Respiratória/metabolismo , Análise de Célula Única , Transcriptoma , Adulto JovemRESUMO
Pulmonary fibrosis is a chronic and fatal lung disease that significantly impacts the aging population globally. To date, anti-fibrotic, immunosuppressive, and other adjunct therapy demonstrate limited efficacies. Advancing our understanding of the pathogenic mechanisms of lung fibrosis will provide a future path for the cure. Cellular senescence has gained substantial interest in recent decades due to the increased incidence of fibroproliferative lung diseases in the older age group. Furthermore, the pathologic state of cellular senescence that includes maladaptive tissue repair, decreased regeneration, and chronic inflammation resembles key features of progressive lung fibrosis. This review describes regulatory pathways of cellular senescence and discusses the current knowledge on the senescence of critical cellular players of lung fibrosis, including epithelial cells (alveolar type 2 cells, basal cells, etc.), fibroblasts, and immune cells, their phenotypic changes, and the cellular and molecular mechanisms by which these cells contribute to the pathogenesis of pulmonary fibrosis. A few challenges in the field include establishing appropriate in vivo experimental models and identifying senescence-targeted signaling molecules and specific therapies to target senescent cells, known collectively as "senolytic" or "senotherapeutic" agents.
Assuntos
Células Epiteliais Alveolares/metabolismo , Senescência Celular , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Transdução de Sinais , Células Epiteliais Alveolares/patologia , Animais , Modelos Animais de Doenças , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/terapiaRESUMO
Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.
Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/citologia , Camundongos , Camundongos Knockout , Organogênese/genética , Organogênese/fisiologia , Gravidez , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais , Complexo Correpressor Histona Desacetilase e Sin3RESUMO
: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.
Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Morte Celular , Autorrenovação Celular , Fibroblastos , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Transdução de SinaisRESUMO
In this study we have determined the genome-wide relationship of JIL-1 kinase mediated H3S10 phosphorylation with gene expression and the distribution of the epigenetic H3K9me2 mark. We show in wild-type salivary gland cells that the H3S10ph mark is predominantly enriched at active genes whereas the H3K9me2 mark is largely associated with inactive genes. Comparison of global transcription profiles in salivary glands from wild-type and JIL-1 null mutant larvae revealed that the expression levels of 1539 genes changed at least 2-fold in the mutant and that a substantial number (49%) of these genes were upregulated whereas 51% were downregulated. Furthermore, the results showed that downregulation of genes in the mutant was correlated with higher levels or acquisition of the H3K9me2 mark whereas upregulation of a gene was correlated with loss of or diminished H3K9 dimethylation. These results are compatible with a model where gene expression levels are modulated by the levels of the H3K9me2 mark independent of the state of the H3S10ph mark, which is not required for either transcription or gene activation to occur. Rather, H3S10 phosphorylation functions to indirectly maintain active transcription by counteracting H3K9 dimethylation and gene silencing.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Epigênese Genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Mapeamento Cromossômico , Drosophila melanogaster/metabolismo , Feminino , Genoma de Inseto , Larva/genética , Larva/metabolismo , Masculino , Metilação , Fosforilação , Transporte Proteico , Glândulas Salivares/metabolismo , TranscriptomaRESUMO
The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Epigênese Genética/fisiologia , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Histonas/genética , Mutação , Fosforilação/fisiologia , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Serina/genética , Serina/metabolismoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from the maladaptive differentiation of lung stem cells into bronchial epithelial cells rather than into alveolar type 1 (AT1) cells, which are responsible for gas exchange. Here, we report that healthy lungs maintain their stem cells through tonic Hippo and ß-catenin signaling, which promote Yap/Taz degradation and allow for low level expression of the Wnt target gene Myc. Inactivation of upstream activators of the Hippo pathway in lung stem cells inhibits this tonic ß-catenin signaling and Myc expression and promotes their Taz mediated differentiation into AT1 cells. Vice versa, increased Myc in collaboration with Yap promotes the differentiation of lung stem cells along the basal and myoepithelial like lineages allowing them to invade and bronchiolize the lung parenchyma in a process reminiscent of submucosal gland development. Our findings indicate that stem cells exhibiting the highest Myc levels become supercompetitors that drive remodeling, whereas loser cells with lower Myc levels terminally differentiate into AT1 cells.
RESUMO
A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated antibiotic treatment during influenza infection causes a fungal dysbiosis that drive lung eosinophilia and impair MRSA clearance. Finally, we evaluated three cohorts of hospitalized patients and found eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs thereby increasing the risk of developing a secondary bacterial infection.
RESUMO
The chromodomain protein, Chromator, can be divided into two main domains, a NH(2)-terminal domain (NTD) containing the chromodomain (ChD) and a COOH-terminal domain (CTD) containing a nuclear localization signal. During interphase Chromator is localized to chromosomes; however, during cell division Chromator redistributes to form a macro molecular spindle matrix complex together with other nuclear proteins that contribute to microtubule spindle dynamics and proper chromosome segregation during mitosis. It has previously been demonstrated that the CTD is sufficient for targeting Chromator to the spindle matrix. In this study, we show that the NTD domain of Chromator is required for proper localization to chromatin during interphase and that chromosome morphology defects observed in Chromator hypomorphic mutant backgrounds can be largely rescued by expression of this domain. Furthermore, we show that the ChD domain can interact with histone H1 and that this interaction is necessary for correct chromatin targeting. Nonetheless, that localization to chromatin still occurs in the absence of the ChD indicates that Chromator possesses a second mechanism for chromatin association and we provide evidence that this association is mediated by other sequences residing in the NTD. Taken together these findings suggest that Chromator's chromatin functions are largely governed by the NH(2)-terminal domain whereas functions related to mitosis are mediated mainly by COOH-terminal sequences.
Assuntos
Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Interfase/fisiologia , Modelos Moleculares , Proteínas Associadas à Matriz Nuclear/metabolismo , Animais , Drosophila melanogaster/genética , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos/genética , Immunoblotting , Imunoprecipitação , Estrutura Terciária de ProteínaRESUMO
Aging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial cells, including both alveolar type II (AT2) and type I (AT1) cells, demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription. The decline of the AT2 niche is further exacerbated by a weakened endothelial cell phenotype and a dysregulated genetic program in macrophages. These findings highlight the dysregulation observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
RESUMO
Epithelial plasticity has been suggested in lungs of mice following genetic depletion of stem cells but is of unknown physiological relevance. Viral infection and chronic lung disease share similar pathological features of stem cell loss in alveoli, basal cell (BC) hyperplasia in small airways, and innate immune activation, that contribute to epithelial remodeling and loss of lung function. We show that a subset of distal airway secretory cells, intralobar serous (IS) cells, are activated to assume BC fates following influenza virus infection. Injury-induced hyperplastic BC (hBC) differ from pre-existing BC by high expression of IL-22Ra1 and undergo IL-22-dependent expansion for colonization of injured alveoli. Resolution of virus-elicited inflammation results in BC to IS re-differentiation in repopulated alveoli, and increased local expression of protective antimicrobial factors, but fails to restore normal alveolar epithelium responsible for gas exchange.
Assuntos
Células Epiteliais , Alvéolos Pulmonares , Animais , Camundongos , Diferenciação Celular , Hiperplasia , Imunidade InataRESUMO
Aging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors. We identified three AEC2 subsets based on their gene signatures. Subset AEC2-1 mainly exist in uninjured lungs, while subsets AEC2-2 and AEC2-3 emerged in injured lungs and increased with aging. Functionally, AEC2 subsets are correlated with progenitor cell renewal. Aging enhanced the expression of the genes related to inflammation, stress responses, senescence, and apoptosis. Interestingly, lung injury increased aging-related gene expression in AEC2s even in young mice. The synergistic effects of aging and injury contributed to impaired AEC2 recovery in aged mouse lungs after injury. In addition, we also identified three subsets of AEC2s from human lungs that formed three similar subsets to mouse AEC2s. IPF AEC2s showed a similar genomic signature to AEC2 subsets from bleomycin-injured old mouse lungs. Taken together, we identified synergistic effects of aging and AEC2 injury in transcriptomic and functional analyses that promoted fibrosis. This study provides new insights into the interactions between aging and lung injury with interesting overlap with diseased IPF AEC2 cells.