Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Environ Sci (China) ; 90: 310-320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081327

RESUMO

Simulated photo-degradation of fluorescent dissolved organic matter (FDOM) in Lake Baihua (BH) and Lake Hongfeng (HF) was investigated with three-dimensional excitation-emission matrix (3DEEM) fluorescence combined with the fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and multi-order kinetic models. In the FRI analysis, fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM. Four individual components were identified by use of PARAFAC analysis as humic-like components (C1), fulvic-like components (C2), protein-like components (C3) and unidentified components (C4). The maximum 3DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%, 70% and 90%, respectively after photo-degradation. The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient (Radj2) (0.963-0.998). The photo-degradation rate constants (kn) showed differences of three orders of magnitude, from 1.09 × 10-6 to 4.02 × 10-4 min-1, and half-life of multi-order model ( T1/2n) ranged from 5.26 to 64.01 min. The decreased values of fluorescence index (FI) and biogenic index (BI), the fact that of percent fluorescence response parameter of Region I (PI,n) showed the greatest change ratio, followed by percent fluorescence response parameter of Region II (PII,n), while the largest decrease ratio was found for C3 components, and the lowest T1/2n was observed for C3, indicated preferential degradation of protein-like materials/components derived from biological sources during photo-degradation. This research on the degradation of FDOM by 3DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FDOM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.


Assuntos
Substâncias Húmicas , Lagos , Processos Fotoquímicos , Análise Fatorial , Espectrometria de Fluorescência
2.
J Am Chem Soc ; 141(18): 7240-7244, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31002756

RESUMO

Developing metal-free catalysts with high catalytic activity for oxygen evolution reaction (OER) is essentially important for energy and environment-related techniques. Compared with individual element doping, doping carbon materials with multiple heteroelements has more advantages for enhancing the OER performance. However, doped sites for the different atoms are highly uncontrollable under the reported methods, which hinder the deeper understanding on the relationship between structure and property, and also limit the enhancement of catalytic activity. Our latest research has reported a method to site-controlled introducing a new form of nitrogen atoms, i.e. sp-hybridized nitrogen (sp-N), into graphdiyne, showing its potential advantages in OER catalysis. Since the sites of sp-N atoms are defined in graphdiyne, and the doping sites for S atoms are well understood, the relative position between N and S can be further defined. It gives us a chance to understand deeply the mechanism in the N, S heteroelements doped metal-free catalyst. Experimental results present that the codoping of sp-N and S atoms brought an excellent OER performance with low overpotential and high current density owning to the effectively synergistic effect of the stereodefined heteroatoms.

3.
J Am Chem Soc ; 139(37): 13013-13023, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28820584

RESUMO

Conjugated backbones play a fundamental role in determining the electronic properties of organic semiconductors. On the basis of two solution-processable dihydropyrrolo[3,4-c]pyrrole-1,4-diylidenebis(thieno[3,2-b]thiophene) derivatives with aromatic and quinoid structures, we have carried out a systematic study of the relationship between the conjugated-backbone structure and the thermoelectric properties. In particular, a combination of UV-vis-NIR spectra, photoemission spectroscopy, and doping optimization are utilized to probe the interplay between energy levels, chemical doping, and thermoelectric performance. We found that a moderate change in the conjugated backbone leads to varied doping mechanisms and contributes to dramatic changes in the thermoelectric performance. Notably, the chemically doped A-DCV-DPPTT, a small molecule with aromatic structure, exhibits an electrical conductivity of 5.3 S cm-1 and a high power factor (PF373 K) up to 236 µW m-1 K-2, which is 50 times higher than that of Q-DCM-DPPTT with a quinoid structure. More importantly, the low thermal conductivity enables A-DCV-DPPTT to possess a figure of merit (ZT) of 0.23 ± 0.03, which is the highest value reported to date for thermoelectric materials based on organic small molecules. These results demonstrate that the modulation of the conjugated backbone represents a powerful strategy for tuning the electronic structure and mobility of organic semiconductors toward a maximum thermoelectric performance.

4.
ACS Nano ; 17(18): 18456-18469, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698581

RESUMO

The emerging technology of harvesting environmental energy using hydrovoltaic devices enriches the conversion forms of renewable energy. It provides more concepts for power supply in micro/nano systems, and hydrovoltaic technology with high performance, usability, and integration is essential for achieving sustainable green energy. Comparing the discovery of multiscale nanomaterials, working layers with innovative microstructures have gradually become the dominant trend in the construction of graphene-based hydrovoltaic devices. However, reports on promoting ion/electron redistribution at the solid-liquid interface through the substrate effect of graphene are accompanied by tedious procedures, nondiverse substrates, and monolithic regulation of enhancement mechanisms. Here, the electrophoretic deposition (EPD)-driven SiC whiskers (SiCw)-assisted graphene transfer process is adopted to alleviate the complexity of the device fabrication caused by graphene transfer. The resulting output performance of the graphene/SiCw (GS) mesh films is significantly boosted. The high integrity of graphene and prominent negative surface charge near the graphene-droplet interface are derived from the overlayer and underlayer inside the graphene-based mixed-dimensional van der Waals (vdW) heterostructures, respectively. Additionally, a self-powered desalination-monitoring system is designed based on integrated hydrovoltaic devices. Electricity harvested from the ionic solutions is reused for deionization, representing an efficient strategy for energy conversion and utilization.

5.
Adv Sci (Weinh) ; 10(32): e2304497, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749871

RESUMO

Sodium ion-batteries (SIBs) are considered as a class of promising alternatives to lithium-ion batteries (LIBs) to overcome their drawbacks of limited sources and safety problems. However, the lack of high-performance electrode materials hinders the wide-range commercialization of SIBs. Comparing to inorganic counterparts, organic electrode materials, which are benefitted from flexibly designable structures, low cost, environmental friendliness, and high theoretical gravimetric capacities, should be a prior choice. Here, a covalent organic polymer (COP) based material (denoted as CityU-9) is designed and synthesized by integrating multiple redox motifs (benzoquinone and thioether), improved conductivity (sulfur induction), and intrinsic insolubility (rigid skeleton). The half-cell SIBs exhibit ultrahigh specific capacity of 1009 mAh g-1 and nearly no capacity drop after 650 cycles. The first all-COP symmetric full-cell shows high specific capacity of 90 mAh g-1 and excellent rate capability. This work can extend the selection of redox-active moieties and provide a rational design strategy of high-performance novel organic electrode materials.

6.
iScience ; 25(1): 103627, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005562

RESUMO

Obesity is known to affect female reproduction, as evidenced by obese patients suffering from subfertility and abnormal oogenesis. However, the underlying mechanisms by which obesity impairs folliculogenesis are poorly documented. Here, we performed comprehensive single-cell transcriptome analysis in both regular diet (RD) and obese mouse models to systematically uncover how obesity affects ovarian follicle cells and their interactions. We found an increased proportion of Inhbb highly expressed granulosa cells (GCs) among all the GC subpopulations in obese mice. Under obese conditions, excessive androgen secreted from endocrine theca cells (ETCs) may contribute to the imbalanced change of GC subtypes through ETCs-GCs interactions. This is alleviated by enzalutamide, an androgen receptor antagonist. We also identified and confirmed typical GC markers, such as Marcks and Prkar2b, for sensitive evaluation of female fertility in obesity. These data represent a resource for studying transcriptional networks and cell-cell interactions during folliculogenesis under physiological and pathological conditions.

7.
Gene ; 710: 161-169, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31153884

RESUMO

The glycerol-3-phosphate dehydrogenase (GPD) gene family plays a major role in glycerol synthesis and adaptation to abiotic stresses. Few studies on GPD family genes from the halotolerant algae Dunaliella salina are available. In this study, seven DsaGPD genes were identified by mining D. salina sequencing data. Among them, DsaGPD5 contained the canonical NAD+-GPD protein domain, called si-GPD. In comparison, DsaGPD1-4 not only contained the canonical NAD+-GPD domain but also a unique domain, the haloacid dehalogenase (HAD)-like superfamily domain, in their N-terminal region, called bi-GPD. DsaGPD6, 7 contained the FAD+-GPD domain. In the transient expression system, DsaGPD1, 3, 4 were found in the cytosol of Arabidopsis thaliana protoplast, DsaGPD2, 5 in the chloroplast, and DsaGPD6, 7 in the mitochondria. MEME analysis showed that six conserved motifs were present in both si-GPDs and bi-GPDs, whereas seven highly conserved motifs were only present in bi-GPDs. The quantitative real-time PCR results showed significant induction of the DsaGPD genes under abiotic stresses, indicating their tolerance-related role in D. salina. DsaGPD2 and DsaGPD5 may be the osmoregulator form and glyceride form in the chloroplast, respectively. The evolutionary forces acting on si-GPDs and bi-GPDs were different in the same organism: bi-GPDs were under purifying selection, while si-GPDs were mainly under positive selection. Furthermore, evolution of the N_HAD domain and C_GPD domain in bi-GPDs is highly correlated. In summary, this study characterizes DsaGPD gene family members and provides useful information for elucidating the salt tolerance mechanism in D. salina.


Assuntos
Clorofíceas/enzimologia , Mineração de Dados/métodos , Glicerolfosfato Desidrogenase/química , Glicerolfosfato Desidrogenase/genética , Proteínas de Algas/química , Proteínas de Algas/genética , Motivos de Aminoácidos , Clorofíceas/genética , Cloroplastos/enzimologia , Evolução Molecular , Mitocôndrias/enzimologia , Família Multigênica , Filogenia , Domínios Proteicos , Análise de Sequência de DNA
8.
Adv Mater ; 30(3)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29149531

RESUMO

Semiconducting polymers with π-conjugated electronic structures have potential application in the large-scale printable fabrication of high-performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high-cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π-conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π-π interaction, several-layer polymers can be adsorbed onto the graphene planes. The low consumption of the high-cost semiconductor polymers and the mass production of graphene contribute to the low-cost fabrication of the π-conjugated polymer/graphene composite materials. Based on the π-conjugated system, a reduced π-π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge-transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π-conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property-by-design fabrication of functional devices with large area, low cost, and high efficiency.

9.
Nat Chem ; 10(9): 924-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082882

RESUMO

The oxygen reduction reaction (ORR) is a fundamental reaction for energy storage and conversion. It has mainly relied on platinum-based electrocatalysts, but the chemical doping of carbon-based materials has proven to be a promising strategy for preparing metal-free alternatives. Nitrogen doping in particular provides a diverse range of nitrogen forms. Here, we introduce a new form of nitrogen doping moieties -sp-hybridized nitrogen (sp-N) atoms into chemically defined sites of ultrathin graphdiyne, through pericyclic replacement of the acetylene groups. The as-prepared sp-N-doped graphdiyne catalyst exhibits overall good ORR performance, in particular with regards to peak potential, half-wave potential and current density. Under alkaline conditions it was comparable to commercial Pt/C, and showed more rapid kinetics. And although its performances are a bit lower than those of Pt/C in acidic media they surpass those of other metal-free materials. Taken together, experimental data and density functional theory calculations suggest that the high catalytic activity originates from the sp-N dopant, which facilitates O2 adsorption and electron transfer on the surface of the catalyst. This incorporation of chemically defined sp-N atoms provides a new synthetic route to high-performance carbon-based and other metal-free catalysts.

10.
ACS Appl Mater Interfaces ; 9(46): 40752-40759, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29086557

RESUMO

A graphene-like coordination polymer based on copper(II) benzenehexathiol (Cu-BHT, 1) with high electric conductivity (103 S·cm-1) was prepared recently. The high conductivity makes this material a good candidate for electrocatalysis, and here its catalytic activity toward hydrogen evolution reaction (HER) was evaluated. Cu-BHT shows good activity and stability for HER in acidic solutions under high current densities. By changing the preparation conditions, the morphology of Cu-BHT materials was controlled at the mesoscale, which allows the preparation of a thin film (TF-1), nanocrystal (NC-1), and amorphous nanoparticle (NP-1) of Cu-BHT. The overpotential of Cu-BHT toward HER shows an improved activity from 760 mV (NC-1) to 450 mV (NP-1) at a current density of 10 mA·cm-2. A Tafel slope of ∼95 mV·dec-1 and an exchange current density of 10-3 mA·cm-2 were achieved under optimized conditions. Density functional theory calculations suggest that the "Cu-edge site" on the (100) surface plays an important role in improving the HER catalytic performance of Cu-BHT nanoparticles.

11.
Chem Commun (Camb) ; 53(55): 7772-7775, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28650017

RESUMO

Here, we present our recent progress on the synthesis, crystal structure, physical properties and DFT calculations of a novel large pyrene-fused N-heteroacene (15RINGS) with 15 aromatic six-membered rings linearly fused in one row. The long conjugated backbone (more than 35 Å) of 15RINGS possesses a dual-bending feature (the bending angle is about 13.2°).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA