RESUMO
Dynamic processes in various fields exhibit risk coupling phenomena, but existing risk analysis studies tend to ignore the risk coupling effects of dynamic scenarios. Considering the principles of digitization, objective quantification, and the full process that should be adopted in the risk coupling analysis, an integrated risk coupling analysis framework is proposed. Specifically, the weighted Eclat algorithm is used to mine the risk association rules, then the key risk factors are extracted by social network analysis, and the stochastic Petri net is used to complete the construction, simulation, and evolution of accident scenarios. This universal framework can analyze the risk phenomena of accident scenario evolution in a process-oriented manner and decouple risks based on key risk factors and disconnect the chain of the accident scenario evolution process. Finally, the proposed framework is applied to the coupled analysis of fire risk in Chinese urban communities to verify its feasibility and scientific validity.
RESUMO
Atherosclerotic cerebrocardiovascular disease is the major cause of acute ischemic diseases in humans. Impaired efferocytosis contributes to the progression of atherosclerosis. Pathological and apoptotic cells fail to undergo effective phagocytic clearance, leading to increased inflammation and necrotic core formation. Previously, we reported that 5-aminolevulinic acid-mediated sonodynamic therapy (SDT) promotes apoptotic cell efferocytosis via ATP release in atherosclerotic plaques. However, the exact signaling molecule involved in this process is still unknown. In the present study, sinoporphyrin sodium-mediated SDT (DVDMS-SDT) was applied to balloon-denuded rabbits in vivo to observe changes in the composition of atherosclerotic lesions. Cultured human THP-1-derived and mouse peritoneal macrophage-derived foam cells were used for in vitro mechanistic studies. Three days after DVDMS-SDT treatment, macrophage efferocytosis was significantly enhanced whereas local inflammation was attenuated in rabbit atherosclerotic lesions. At days 7 and 28, the histopathological analysis showed that DVDMS-SDT inhibited the progression of atherosclerosis, reduced the macrophage content, and increased the smooth muscle cell content in a time-dependent manner. Mechanistically, DVDMS-SDT activated mitochondria-caspase apoptosis in foam cells. Interestingly, activated by DVDMS-SDT, caspase-3 a key factor of apoptosis, reduced the expression of the anti-phagocytic molecule CD47 in foam cells. Of great importance, the promotion of macrophage efferocytosis by DVDMS-SDT can be eliminated by the overexpression of CD47. Overall, these results demonstrated that DVDMS-SDT effectively boosted efferocytosis via deactivation of CD47 expression, thereby reducing inflammation in advanced atherosclerotic plaques.
Assuntos
Antígeno CD47/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/terapia , Porfirinas/uso terapêutico , Terapia por Ultrassom , Animais , Apoptose , Caspase 3/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Fagocitose , Placa Aterosclerótica/metabolismo , CoelhosRESUMO
Cytosine methylation plays vital roles in regulating gene expression and plant development. However, the function of DNA methylation in the development of macroalgae remains unclear. Through the genome-wide bisulfite sequencing of cytosine methylation in holdfast, stipe and blade, we obtained the complete 5-mC methylation landscape of Saccharina japonica sporophyte. Our results revealed that the total DNA methylation level of sporophyte was less than 0.9%, and the content of CHH contexts was dominant. Moreover, the distribution of CHH methylation within the genes exhibited exon-enriched characteristics. Profiling of DNA methylation in three parts revealed the diverse methylation pattern of sporophyte development. These pivotal DMRs were involved in cell motility, cell cycle and cell wall/membrane biogenesis. In comparison with stipe and blade, hypermethylation of mannuronate C5-epimerase in holdfast decreased the transcript abundance, which affected the synthesis of alginate, the key component of cell walls. Additionally, 5-mC modification participated in the regulation of blade and holdfast development by the glutamate content respectively via glutamine synthetase and amidophosphoribosyl transferase, which may act as the epigenetic regulation signal. Overall, our study revealed the global methylation characteristics of the well-defined holdfast, stipe and blade, and provided evidence for epigenetic regulation of sporophyte development in brown macroalgae.
Assuntos
Metilação de DNA/genética , Epigênese Genética , Genoma de Planta/genética , Laminaria/genética , Amidofosforribosiltransferase/genética , Mapeamento Cromossômico , Citosina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/metabolismo , Laminaria/crescimento & desenvolvimento , Desenvolvimento Vegetal/genéticaRESUMO
Pyropia haitanensis is an important laver species in China. Its quality traits are closely related to the content of glutamic acid. Glutamate dehydrogenase (GDH) is a crucial enzyme in the glutamic acid metabolism. In this study, two GDH genes from P. haitanensis, PhGDH1 and PhGDH2, were cloned and successfully expressed in Escherichia coli. The in vitro enzyme activity assay demonstrated that the catalytic activity of PhGDHs is mainly in the direction of ammonium assimilation. The measured Km values of PhGDH1 for NADH, (NH4)2SO4, and α-oxoglutarate were 0.12, 4.99, and 0.16 mM, respectively, while the corresponding Km values of PhGDH2 were 0.02, 3.98, and 0.104 mM, respectively. Site-directed mutagenesis results showed that Gly193 and Thr361 were important catalytic residues for PhGDH2. Moreover, expression levels of both PhGDHs were significantly increased under abiotic stresses. These results suggest that PhGDHs can convert α-oxoglutarate to glutamic acid, and enhance the flavor and stress resistance of P. haitanensis.
Assuntos
Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Rodófitas/metabolismo , Fenômenos Bioquímicos , China , Glutamato Desidrogenase/fisiologia , Mutagênese Sítio-Dirigida , Rodófitas/genética , Estresse Fisiológico/fisiologiaRESUMO
CRY-DASH, a new cryptochrome blue light receptor, can repair damaged DNA and regulate secondary metabolism and development of fungus. However, its role in regulation during the growth of Saccharina japonica is still unclear. After cloning the full-length of CRY-DASH from S. japonica (sjCRY-DASH), we deduced that its open reading frame was 1779 bp long and encoded 592 amino acids. sjCRY-DASH transcription was rapidly upregulated within 30 min in response to blue light and exhibited 24 h periodicity with different photoperiods. Moreover, sjCRY-DASH maintained the same periodicity in suitable growth temperature, suggesting a close relationship between this periodicity and circadian rhythm regulation. Novel-m3234-5p, which was targeted to sjCRY-DASH, decreased with increasing sjCRY-DASH transcription, acting as a negative modulator of sjCRY-DASH. Six long non-coding RNAs classified as long intergenic non-coding RNAs (lincRNAs) exhibited co-expression with sjCRY-DASH. A miRNA sjCRY DASH lincRNA network was consequently identified. By predicting the endogenous competing mRNAs of novel-m3234-5p, we found that sjCRY-DASH indirectly participated in the regulation of DNA damage repair, protein synthesis and processing, and actin transport. In conclusion, our results revealed that non-coding RNAs participate in the regulation of sjCRY-DASH, which played vital roles in the growth and early development of S. japonica.
Assuntos
Criptocromos/metabolismo , Laminaria/genética , Laminaria/metabolismo , RNA Longo não Codificante/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Análise por Conglomerados , Criptocromos/genética , Reparo do DNA/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos da radiação , Laminaria/crescimento & desenvolvimento , Laminaria/efeitos da radiação , Luz , Fotoperíodo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , TemperaturaRESUMO
Blue light (BL) plays an important role in regulation of the growth and development of aquatic plants and land plants. Aureochrome (AUREO), the recent BL photoreceptor identified in photosynthetic stramenopile algae, is involved in the photomorphogenesis and early development of Saccharina japonica porophytes (kelp). However the factors that interact with the SjAUREO under BL conditions specifically are not clear. Here in our study, three high quality cDNA libraries with CFU over 5 × 106 and a recombination rate of 100% were constructed respectively through white light (WL), BL and darkness (DK) treatments to the juvenile sporophytes. Based on the constructed cDNA libraries, the interactors of SjAUREO were screened and analyzed. There are eighty-four genes encoding the sixteen predicted proteins from the BL cDNA library, sixty-eight genes encoding eighteen predicted proteins from the DK cDNA library, and seventy-four genes encoding nineteen proteins from the WL cDNA library. All the predicted proteins are presumed to interact with SjAUREO when co-expressed with SjAUREO seperately. The 40S ribosomal protein S6 (RPS6), which only exists in the BL treated cDNA library except for two other libraries, and which is essential for cell proliferation and is involved in cell cycle progression, was selected for detailed analysis. We showed that its transcription was up-regulated by BL, and was highly transcribed in the basal blade (meristem region) of juvenile sporophytes but less in the distal part. Taken together, our results indicated that RPS6 was highly involved in BL-mediated kelp cellular division and photomorphogenesis by interacting with SjAUREO.
Assuntos
Laminaria/metabolismo , Laminaria/efeitos da radiação , Luz , Proteína S6 Ribossômica/metabolismo , Proteína S6 Ribossômica/efeitos da radiação , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/efeitos da radiação , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Biblioteca Gênica , Genes de Plantas/genética , Laminaria/genética , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos da radiação , Fotossíntese , Proteínas de Plantas/genética , Proteínas Ribossômicas/genética , Regulação para Cima/efeitos da radiaçãoRESUMO
Tic20 is an important translocon protein that plays a role in protein transport in the chloroplast. The sequence of Tic20 was determined in the lower brown alga Saccharina japonica. Structural analysis of SjTic20 revealed a noncanonical structure consisting of an N-terminal non-cyanobacterium-originated EF-hand domain (a helix-loop-helix structural domain) and a C-terminal cyanobacterium-originated Tic20 domain. Subcellular localization and transmembrane analysis indicated that SjTic20 featured an "M"-type Nin-Cin-terminal orientation, with four transmembrane domains in the innermost membrane of the chloroplast in the microalga Phaeodactylum tricornutum, and the EF-hand domain was entirely extruded into the chloroplast stroma. Our study provides information on the structure, localization, and topological features of SjTic20, and further functional analysis of SjTic20 in S. japonica is needed.
Assuntos
Cloroplastos/química , Diatomáceas/química , Proteínas de Membrana Transportadoras/análise , Phaeophyceae/química , Motivos EF Hand , Microalgas/químicaRESUMO
BACKGROUND/AIMS: We and other groups have demonstrated that 5-aminolevulinic acid (ALA)-mediated sonodynamic therapy (ALA-SDT) induces macrophage and foam cell apoptosis and stabilizes atherosclerosis (AS) plaques in animal models. Lymphocytes also play vital roles in the development of AS. The primary purpose of the present study was to investigate the effects of ALA-SDT on T helper (Th) cell fate and function, Th subset differentiation, and atherosclerotic lesion stability. METHODS: We utilized ALA-SDT on Western diet-fed apoE-/-mice in vivo and human Jurkat cells in vitro. Hematoxylin and eosin staining and TUNEL assays were used to evaluate the atherosclerotic plaque size and apoptosis within the atheroma. ALA induced cytotoxicity on cultured Jurkat cells was determined with CCK-8 assay. To address the mechanisms, levels of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and mitochondrial permeability transition pore (MPTP) opening were evaluated by staining with fluorescent probes. Western blot analysis and confocal microscopy were used to analyze the protein levels of caspases, Bax and cytochrome c and the release of cytochrome c. Cell apoptosis and necrosis and phagocytosis were examined by flow cytometry. ELISAs and immunofluorescent staining were used to assess the corresponding cytokine levels and Th subset cell numbers within the atheroma. RESULTS: Our studies revealed that ALA-SDT significantly enhanced CD4+ cell apoptosis and macrophage-mediated phagocytosis and hence reduced the necrotic core size. ALA-SDT activated the mitochondrial apoptotic signaling pathway with minimal necrosis in Jurkat cells. ALA-SDT inhibited the Th1 response and enhanced the Th2 response. These effects of ALA-SDT were mediated primarily through the generation of ROS. CONCLUSION: ALA-SDT alleviates AS by enhancing cytotoxic effects on Th cells, subsequently stimulating efferocytosis and facilitating a shift in the Th1/Th2 balance toward Th2 cells, a discovery that might help elucidate the mechanism underlying SDT as a potential treatment to prevent atherothrombotic events.
Assuntos
Ácido Aminolevulínico/uso terapêutico , Aterosclerose/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Células Th1/patologia , Células Th2/patologia , Terapia por Ultrassom/métodos , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Células Jurkat , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Células Th1/metabolismo , Células Th2/metabolismoRESUMO
BACKGROUND: Long-term survival in isolated marginal seas of the China coast during the late Pleistocene ice ages is widely believed to be an important historical factor contributing to population genetic structure in coastal marine species. Whether or not contemporary factors (e.g. long-distance dispersal via coastal currents) continue to shape diversity gradients in marine organisms with high dispersal capability remains poorly understood. Our aim was to explore how historical and contemporary factors influenced the genetic diversity and distribution of the brown alga Sargassum thunbergii, which can drift on surface water, leading to long-distance dispersal. RESULTS: We used 11 microsatellites and the plastid RuBisCo spacer to evaluate the genetic diversity of 22 Sargassum thunbergii populations sampled along the China coast. Population structure and differentiation was inferred based on genotype clustering and pairwise F ST and allele-frequency analyses. Integrated genetic analyses revealed two genetic clusters in S. thunbergii that dominated in the Yellow-Bohai Sea (YBS) and East China Sea (ECS) respectively. Higher levels of genetic diversity and variation were detected among populations in the YBS than in the ECS. Bayesian coalescent theory was used to estimate contemporary and historical gene flow. High levels of contemporary gene flow were detected from the YBS (north) to the ECS (south), whereas low levels of historical gene flow occurred between the two regions. CONCLUSIONS: Our results suggest that the deep genetic divergence in S. thunbergii along the China coast may result from long-term geographic isolation during glacial periods. The dispersal of S. thunbergii driven by coastal currents may facilitate the admixture between southern and northern regimes. Our findings exemplify how both historical and contemporary forces are needed to understand phylogeographical patterns in coastal marine species with long-distance dispersal.
Assuntos
Ecossistema , Fluxo Gênico , Variação Genética , Sargassum/genética , Teorema de Bayes , China , Análise por Conglomerados , DNA de Cloroplastos/genética , Genética Populacional , Haplótipos/genética , Repetições de Microssatélites/genética , Oceanos e Mares , Filogeografia , Análise de Componente PrincipalRESUMO
BACKGROUND: Previous studies from our group showed that low-intensity sonodynamic therapy (SDT) has protective effects on atherosclerosis (AS). However, because the intensity of ultrasound passing through tissue is attenuated, the consequences of very low-intensity SDT, referred to as non-lethal SDT (NL-SDT), on atherosclerotic plaques are unclear. The aim of this study was to determine whether NL-SDT affects atherosclerotic plaques and to elucidate the possible underlying mechanisms. METHODS: An AS model was established using ApoE-/- mice fed a western diet. En face Oil Red O staining was used to measure atherosclerotic plaque size. Hematoxylin and eosin staining and immunohistochemical staining were used to observe plaque morphology and assess the location of macrophages and heme oxygenase 1 (HO-1). HO-1 mRNA and protein levels in AS plaques were evaluated by real-time PCR and western blotting. Human THP-1 cells and mouse peritoneal macrophages were used in this study. Western blotting was used to investigate the expression of cellular proteins after NL-SDT. Macrophage apoptosis was evaluated by TUNEL assays and flow cytometry with Annexin V/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolyl carbocyanine iodide (JC-1) staining, respectively. RESULTS: NL-SDT significantly inhibited AS progression and reduced the necrotic core area. NL-SDT induced HO-1 expression in lesional macrophages and in cultured macrophages. NL-SDT activated the protein kinase B (AKT) and extracellular signal-related protein kinase (ERK) pathways and the transcription factor NF-E2-related factor 2 (Nrf2).NL-SDT significantly reduced oxidized LDL (ox-LDL)-induced macrophage MMP collapse, ROS production and cell apoptosis. Zinc protoporphyrin (ZnPP), a HO-1-specific inhibitor, reversed the protective effects of NL-SDT. CONCLUSION: NL-SDT inhibits atherosclerotic plaque progression and increases plaque stability. In vitro, NL-SDT has a protective effect on ox-LDL-induced macrophage impairment via HO-1.
Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/terapia , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Lipoproteínas LDL/toxicidade , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Heme Oxigenase-1/antagonistas & inibidores , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Protoporfirinas/toxicidade , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Terapia por UltrassomRESUMO
BACKGROUND/AIMS: Sonodynamic therapy (SDT) is a localized ultrasound-activated therapy for atherosclerosis when combined with a sonosensitizer, 5-aminolevulinic acid (ALA), but whether it can prevent cardiac fibrosis has not been studied. In the present study, we evaluated the effects SDT on fibrogenesis in rat cardiac fibroblasts. METHODS: The primary cardiac fibroblasts were isolated from rats, and induced to fibrogenesis with TGF-ß1. With this in vitro model, we tested the preventive effects of SDT on fibrogenesis and further the underlying mechanism. RESULTS: TGF-ß1 stimulation up-regulated α-SMA and COLI/III protein levels in cardiac fibroblasts, and enhanced the progression of cells from the G0/G1 phase to the S phase. SDT inhibited the TGF-ß1 mediated cell proliferation and decreased the levels of α-SMA and COLI/III by activating AKT/GSK3ß pathway and blocking TGF-ß1/SMAD3 signaling. CONCLUSION: Our studies demonstrate an antifibrotic effect of SDT in rat cardiac fibroblasts, suggesting that SDT may intervene cardiac fibrogenesis by regulating myocardial fibrotic remodeling.
Assuntos
Fibroblastos/patologia , Miocárdio/patologia , Fator de Crescimento Transformador beta1/farmacologia , Ultrassom , Ácido Aminolevulínico/farmacologia , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/biossíntese , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Glicogênio Sintase Quinase 3 beta/metabolismo , Espaço Intracelular/metabolismo , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Protoporfirinas/farmacologia , Ratos Sprague-Dawley , Proteína Smad3/metabolismoRESUMO
BACKGROUND: Population structure and genetic diversity of marine organisms in the Northwestern Pacific Ocean exhibited complex patterns. Saccharina japonica is a commercially and ecologically important kelp species widely distributed along the coast of Japan Sea. However, it is still poorly known about population genetics and phylogeographic patterns of wild S. japonica populations on a large geographic scale, which is an important contribution to breeding and conservation of this marine crop. RESULTS: We collected 612 mitochondrial COI and trnW-trnL sequences. Diversity indices suggested that S. japonica populations along the coast of Hokkaido exhibited the highest genetic diversity. Bayesian Analysis of Population Structure (BAPS) revealed four clusters in the kelp species (cluster 1: Hokkaido and South Korea; cluster 2: northwestern Hokkaido; cluster 3: Far Eastern Russia; cluster 4: China). The network inferred from concatenated data exhibited two shallow genealogies corresponding to two BAPS groups (cluster 2 and cluster 3). We did not detect gene flow between the two shallow genealogies, but populations within genealogy have asymmetric gene exchange. Bayesian skyline plots and neutrality tests suggested that S. japonica experienced postglacial expansion around 10.45 ka. CONCLUSIONS: The coast of Hokkaido might be the origin and diversification center of S. japonica. Gene exchange among S. japonica populations could be caused by anthropogenic interference and oceanographic regimes. Postglacial expansions and gene exchange apparently led to more shared haplotypes and less differentiation that in turn led to the present shallow phylogeographical patterns in S. japonica.
Assuntos
Kelp/genética , Teorema de Bayes , Fluxo Gênico , Variação Genética , Haplótipos , Kelp/classificação , Oceano Pacífico , FilogeografiaRESUMO
A Gram-reaction-negative, rod-shaped, yellow-pigmented, motile by gliding bacterial strain, designated RU-4-M-4(T), was isolated from intertidal sediment of Sakhalin Island in Russia. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain RU-4-M-4(T) was related to the genus Algibacter and had highest 16S rRNA gene sequence similarity with Algibacter pectinivorans KACC 14153(T) (97.2%). The major cellular fatty acids were iso-C15 : 0 3-OH, C15: 0 and iso-C15 : 1 G. The predominant menaquinone was MK-6. The polar lipid profile contained phosphatidylethanolamine, three unidentified aminolipids and two unidentified lipids. The genomic DNA G+C content of strain RU-4-M-4(T) was 36.4 mol%. Combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain RU-4-M-4(T) is a representative of a novel species of the genus Algibacter , for which we propose the name Algibacter amylolyticus sp. nov. (type strain RU-4-M-4(T)â=LMG 28383(T)â=DSM 29199(T)).
Assuntos
Flavobacteriaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Ilhas , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
The Gram-stain-negative, rod-shaped bacterial strain designated RU-1-R-18(T) was isolated from intertidal sediment on Sakhalin Island in Russia. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain RU-1-R-18(T) was related to the genus Puniceibacterium and shared highest sequence similarities with the type strain Puniceibacterium antarcticum KACC 16875(T) (97.9%). The predominant cellular fatty acid was C(18:1)ω7c. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminophospholipid and seven unidentified polar lipids. The genomic DNA G+C content of strain RU-1-R-18(T) was 59.1 mol%. Combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain RU-1-R-18(T) represents a novel species of the genus Puniceibacterium , for which the name Puniceibacterium sediminis sp. nov. is proposed (type strain RU-1-R-18(T)â=LMG 28384(T)â=DSM 29052(T)).
Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Federação Russa , Análise de Sequência de DNARESUMO
Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these results suggest that VDAC1 plays a crucial role in ALA-SDT-induced THP-1 macrophages apoptosis, and targeting VDAC1 is a potential way regulating macrophages apoptosis, a finding that may be relevant to therapeutic strategies against atherosclerosis.
Assuntos
Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Som , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes de Cálcio/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Humanos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismoRESUMO
BACKGROUND: Protoporphyrin IX (PpIX) and its derivatives are widely used in photodynamic therapy (PDT) to kill cancer cells. Studies showed that the application of these drugs could cause systemic toxic effects in human. However, the molecular pathways involved in PpIX-induced cytotoxicity are not well-defined. Macrophages represent the primary system for protecting tissues from toxicants and initiating the resolution of inflammation. Thus, this study aims to investigate the toxicity of PpIX on macrophages and provide strategies to prevent the toxic effects. METHODS: THP-1 macrophages were incubated with PpIX and cell death was measured by MTT assay and Annexin V-PI staining. Intracellular reactive oxygen species (ROS) were evaluated by 2', 7'-Dichlorodihydrofluorescin diacetate (DCFH-DA) and MitoSOX® Red staining and mitochondrial membrane potential (ΔΨm) was detected by tetramethylrhodamine methyl ester (TMRM) staining. Mitogen-activated protein (MAP) kinase activation was assayed by western blotting. Mitochondrial permeability transition pore (mPTP) opening was measured by calcein loading/Co(2+) quenching technique and evaluating the release of mitochondrial content. RESULTS: PpIX reduced cell viability in a dose- and time-dependent manner. The cell death was characterized by increasing PI-positive cells, ATP depletion, LDH releasing and rapid ΔΨm loss favoring necrotic features. In addition, PpIX successively induced ROS production, c-Jun N-terminal protein kinase (JNK) activation and mPTP opening. ROS scavengers, N-acetylcysteine (NAC) and deferoxamine (DFX), JNK inhibitor, SP600125, and mPTP inhibitor, cyclosporin A (CsA), all significantly rescued this cell death. Furthermore, mPTP opening was directly regulated by ROS/JNK pathway. CONCLUSION: PpIX induces a necrotic cell death in THP-1 macrophages through ROS production, JNK activation, and mPTP opening. It is tempting to speculate that blocking the pathways involved in the cytotoxic effects of PpIX will alleviate its side effects.
Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Necrose/metabolismo , Protoporfirinas/administração & dosagem , Antracenos/administração & dosagem , Morte Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Macrófagos/metabolismo , Macrófagos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial , Necrose/genética , Protoporfirinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The gut microbiota is widely regarded as a "metabolic organ" that could generate myriad metabolites to regulate human metabolism. As the microbiota metabolites, bile acids (BAs) have recently been identified as the critical endocrine molecules that mediate the cross-talk between the host and intestinal microbiota. This study provided a comprehensive insight into the gut microbiota and BA research through bibliometric analysis from 2003 to 2022. The publications on this subject showed a dramatic upward trend. Although the USA and China have produced the most publications, the USA plays a dominant role in this expanding field. Specifically, the University of Copenhagen was the most productive institution. Key research hotspots are the gut-liver axis, short-chain fatty acids (SCFAs), cardiovascular disease (CVD), colorectal cancer (CRC), and the farnesoid x receptor (FXR). The molecular mechanisms and potential applications of the gut microbiota and BAs in cardiometabolic disorders and gastrointestinal cancers have significant potential for further research.
RESUMO
To describe the safety rules of various industrial process data and explore the characteristics of unsafe behaviour, the association rules of unsafe behaviour based on pan-scene were proposed in this study. First, based on the scene data theory, unsafe behaviour was described by eight dimensions (time, location, behavioural individual, unsafe action, behavioural attribute, behavioural trace, professional category and risk level) to achieve scene data description and structural transformation. Second, the Apriori algorithm was used to explore the distribution rules of unsafe behaviour dimensions and the interaction between different dimensions from two perspectives: single-dimensional statistical analysis and multidimensional association rule mining. Finally, through SPSS Modeler software, an empirical analysis of pan-scene data for subway construction was conducted, and the association rules between type of work, construction stage, working time and unsafe action were identified. Some strong association rules were produced by the association analysis. For example, during the 13:00-17:00 of the excavation floor stage, the most frequent unsafe action of machine operators is the irregular binding of lifting objects. This result could explain why some unsafe actions are prone to occur in different construction stages and working times for workers of different types, which can be controlled and managed in a targeted manner, thus reducing the possibility of accidents.
RESUMO
Background and aim: Diagnosing nonalcoholic steatohepatitis (NASH) is challenging. This study intended to explore the diagnostic value of multiple technical acoustic measurements in the diagnosis of NASH, and to establish a diagnostic model combining technical acoustic measurements with clinical parameters to improve the diagnostic efficacy of NASH. Methods: We consecutively enrolled 75 patients with clinically suspected nonalcoholic fatty liver disease (NAFLD) who underwent percutaneous liver biopsy in our hospital from June 2020 to December 2021. All cases underwent multiple advanced acoustic measurements for liver such as shear wave dispersion (SWD), shear wave speed (SWS), attenuation imaging (ATI), normalized local variance (NLV), and liver-kidney intensity ratio (Ratio) examination before liver biopsies. A nomogram prediction model combining the technical acoustic measurements and clinical parameters was established and the model is proposed to improve the diagnostic performance of NASH. Results: A total of 75 cases were included in this study. The classification of pathological grade for NASH was as follows: normal liver, (n = 15, 20%), nonalcoholic fatty liver (NAFL), (n = 44, 58.7%), and NASH, (n = 16, 21.3%). There were statistically significant differences in SWS (p = 0.002), acoustic coefficient (AC) (p = 0.018), NLV (p = 0.033), age (p = 0.013) and fasting blood glucose (Glu) (p = 0.049) between NASH and non-NASH. A nomogram model which includes SWS, AC, NLV, age and Glu was built to predict NASH, and the calibration curves showed good calibrations in both training and validation sets. The AUCs of the combined nomogram model for the training set and validation set were 0.8597 and 0.7794, respectively. Conclusion: There were statistically significant differences in SWS, AC, NLV, age and Glu between NASH and non-NASH. A nomogram model which includes SWS, AC, NLV, age and Glu was built to predict NASH. The predictive model has a higher diagnostic performance than a single factor model in the diagnosis of NASH and has good clinical application prospects.
RESUMO
BACKGROUND: The rupture of vulnerable atherosclerotic plaque is the main cause of acute ischemic vascular events, and is characterized by pathological degradation of matrix collagen in the fibrous cap. In a previous study, we reported that 5-aminolevulinic acid-mediated sonodynamic therapy suppressed collagen degradation in rabbit plaque. However, the underlying molecular mechanism has yet to be fully elucidated. METHODS: We applied sinoporphyrin sodium-mediated sonodynamic therapy (DVDMS-SDT) to balloon-denuded rabbit and apolipoprotein E-deficient (ApoE-/-) mouse models to observe collagen content in plaque. Cultured human THP-1 and mouse peritoneal macrophage-derived foam cells were used for in vitro mechanistic studies. RESULTS: We observed that DVDMS-SDT decreased plaque area and increased the percentages of collagen and smooth muscle cells and reduced the percentage of macrophages in rabbit and ApoE-/- mouse advanced plaques. In vitro, DVDMS-SDT modulated the caspase 3-pigment epithelium-derived factor/hypoxia-inducible factor-1α (PEDF/HIF-1α)-matrix metalloprotease-2/9 (MMP-2/MMP-9) signaling in macrophage foam cells. CONCLUSIONS: Our findings show that DVDMS-SDT effectively inhibits matrix collagen degradation in advanced atherosclerotic plaque by modulating caspase 3-PEDF/HIF-1α-MMP-2/MMP-9 signaling in macrophage foam cells and therefore represents a suitable and promising clinical regimen to stabilize vulnerable plaques.