Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 89(4): 2375-2396, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38288704

RESUMO

A universal glycosylation strategy could significantly simplify glycoside synthesis. One approach to achieving this goal is through acyl group direction for the corresponding 1,2-, 1,3-, 1,4-, or 1,6-trans glycosylation; however, this approach has been challenging for glycosidic bonds that require distal equatorial-acyl group direction. We developed an approach in weakly nucleophilic environments for selective 1,4-trans glycosylation directed by the equatorial-4-O-acyl group. Here, we explored this condition in other distal acyl groups and found that, besides 1,n-trans direction, acyl groups also mediated hydrogen bonding between acyl groups and alcohols. The latter showed a diverse effect and classified the acyl group direction into axial and equatorial categories. Corresponding glycosylation conditions were distinguished as guidance for acyl group direction from either category. Hence, acyl group direction may serve as a general glycosylation strategy.

2.
Org Biomol Chem ; 19(8): 1748-1751, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33566055

RESUMO

An isomer of lycoplanine A with a 6/10/5/5 tetracyclic skeleton was synthesized using D-A reaction and cascasde reaction to respectively construct the [9.2.2] pentadecane skeleton and the challenging 1-oxa-6-azaspiro[4.4]nonane spirocenter. Morever, detailed DFT calculations were conducted to explain the selectivity in the D-A reaction. This study may provide sufficient experience for the total synthesis of lycoplanine A and other alkaloids with similar spiro-N,O-acetal cores.

3.
J Org Chem ; 85(15): 9713-9726, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32678601

RESUMO

Mechanistic studies on Cu-catalyzed/mediated sp3 C-H amidation and acetoxylation are investigated from experimental and computational aspects. The concerted metalation-deprotonation (CMD) mechanism rather than a radical-involved pathway is proved to occur in amidation and acetoxylation reactions, and this is the rare example of the CMD mechanism involved in the more challenging sp3 C-H activations. Theoretical calculations demonstrated that CMD is the rate-determining step either for methylic or benzylic positions in amidation and acetoxylation reactions, and intermolecular nucleophilic addition of acetate anions is more favorable than the ring opening of ß-lactams and intramolecular acetoxylation. These mechanistic studies on the divergent and condition-dependent product formation are critical for developing Cu-promoted C-H functionalization via the CMD mechanism.

4.
Org Lett ; 26(33): 7004-7009, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39133868

RESUMO

A Pd-catalyzed decarbonylative Michaelis-Arbuzov reaction of carboxylic acids and triaryl phosphites for preparing aryl phosphonates under anhydride-free conditions has been reported. In this context, triaryl phosphites serve as both reagents for activating the carboxylic acids and substrates for the reaction. There have been no reports to date of efficient and direct methods for the in situ activation of carboxylic acids using triaryl phosphites. In comparison to known methods, this reaction avoids the use of organohalides and has an excellent functional group tolerance for the synthesis of various aryl phosphonates from triaryl phosphites and carboxylic acids. This reaction is scalable and applicable to the synthesis of aryl phosphonates featuring bioactive fragments.

5.
Dalton Trans ; 52(5): 1366-1377, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633156

RESUMO

Based on the bis-ß-diketonate-Dy2 metalloligand [Dy2(pbth)4]·2Et3N (1, pbth = (3z,3'z)-4,4'-(1,3-phenylene)bis(1,1,1-trifluoro-4-hydroxybut-3-en-2-one)), six dinuclear complexes with eight-coordinated geometries were synthesized solvothermally through different capping N-donor coligands or solvent systems. These complexes are namely [Dy2(pbth)3(Phen)2]·2C2H5OH (2), [Dy2(pbth)3(BPhen)2]·2C2H5OH (3), [Dy2(pbth)3(Dppz)2]·2C2H5OH (4), [Dy2(pbth)3(Dppz)2]·2CH3OH (4a), [Dy2(pbth)3(4-Dmbp)2]·CH3OH·C2H5OH (5) and [Dy2(pbth)3(5-Dmbp)2]·CH3OH (6) (Phen = 1,10-phenanthroline, BPhen = 4,7-diphenyl-1,10-phenanthroline, dppz = dipyrido [3,2-a:2',3'-c] phenazine, 4-Dmbp = 4,4'-dimethyl-2,2'-bipyridyl, 5-Dmbp = 5,5'-dimethyl-2,2'-bipyridyl), respectively. In the synthetic processes of 2-6, one of four bis-ß-diketonate ligands in the metalloligand is replaced by two capping N-donor coligands. The coordination geometries, metal distances and M-L-M torsion angles of the synthesized complexes are perceptibly fine-tuned by the modification of the capping N-donor coligands or the latticed solvent molecules. Systematic magnetic investigations indicate the different magnetic relaxation dynamics of 1-6. Complex 1 displays no characteristics of single-molecule magnets (SMMs), while complexes 2-6 exhibit SMM behaviours in the absence of a static magnetic field. Complexes 2 and 3 possess effective energy barriers (Ueff) of 110.18 (2) K and 133.21 (4) K, respectively. Theoretical analysis based on ab initio calculation provides some interpretations of experimental observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA