Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Biomech Eng ; 137(2): 020907, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25429403

RESUMO

For patients suffering from severe coronary heart disease (CHD), the development of a cell-based tissue engineered blood vessel (TEBV) has great potential to overcome current issues with synthetic graft materials. While marrow stromal cells (MSCs) are a promising source of vascular smooth muscle cells (VSMCs) for TEBV construction, they have been shown to differentiate into both the VSMC and osteoblast lineages under different rates of dynamic strain. Determining the permanence of strain-induced MSC differentiation into VSMCs is therefore a significant step toward successful TEBV development. In this study, initial experiments where a cyclic 10% strain was imposed on MSCs for 24 h at 0.1 Hz, 0.5 Hz, and 1 Hz determined that cells stretched at 1 Hz expressed significantly higher levels of VSMC-specific genetic and protein markers compared to samples stretched at 0.1 Hz. Conversely, samples stretched at 0.1 Hz expressed higher levels of osteoblast-specific genetic and protein markers compared to the samples stretched at 1 Hz. More importantly, sequential application of 24-48 h periods of 0.1 Hz and 1 Hz strain-induced genetic and protein marker expression levels similar to the VSMC profile seen with 1 Hz alone. This effect was observed regardless of whether the cells were first strained at 0.1 Hz followed by strain at 1 Hz, or vice versa. Our results suggest that the strain-induced VSMC phenotype is a more terminally differentiated state than the strain-induced osteoblast phenotype, and as result, VSMC obtained from strain-induced differentiation would have potential uses in TEBV construction.


Assuntos
Diferenciação Celular , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Músculo Liso Vascular/citologia , Fenômenos Biomecânicos , Transdiferenciação Celular , Humanos , Osteoblastos/citologia
3.
Stem Cells ; 25(6): 1384-92, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17332507

RESUMO

Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a high proliferative potential and the capacity to differentiate into an osteogenic phenotype. HUCPVCs have thus been considered a possible extra-embryonic mesenchymal stem cell (MSC) source for cell-based therapies. To assess this potential, we compared HUCPVCs to the "gold standard" bone marrow mesenchymal stromal cells (BMSCs) with respect to their proliferation, differentiation, and transfection capacities. HUCPVCs showed a higher proliferative potential than BMSCs and were capable of osteogenic, chondrogenic, and adipogenic differentiation. Interestingly, osteogenic differentiation of HUCPVCs proceeded more rapidly than BMSCs. Additionally, HUCPVCs expressed higher levels of CD146, a putative MSC marker, relative to BMSCs. HUCPVCs showed comparable transfection efficiency as BMSCs using a nucleofection method but were more amenable to transfection with liposomal methods (FuGENE). Gene array analysis showed that HUCPVCs also expressed Wnt signaling pathway genes that have been implicated in the regulation of MSCs. The similar characteristics between HUCPVCs and MSCs support the applicability of HUCPVCs for cell-based therapies. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Antígeno CD146/metabolismo , Linhagem da Célula , Células Cultivadas , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Transfecção , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA