Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 666: 659-669, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616448

RESUMO

Two-dimensional NOE (nuclear Overhauser effect) NMR spectroscopy was employed to investigate the dynamic properties of water within lyotropic bicontinuous lipidic cubic phases (LCPs) formed by monoolein (MO). Experiments observed categorically different effective residence times of water molecules: (i) in proximity to the glycerol moiety of MO, and (ii) adjacent to the hydrophobic chain towards the hydrocarbon tail of MO, as evidenced by the opposite signs of intermolecular NOE cross peaks between protons of water and those of MO in 2D 1H-1H NOESY spectra. Spectroscopic data delineating the different effective residence times of water molecules within both the gyroid (QIIG) and diamond (QIID) phase groups corresponding to hydration levels of 35 and 40 wt%, respectively, are presented. Additionally, an increase in effective residence time of water molecules in proximity to the glycerol moiety of MO in LCPs was observed upon storage at ambient temperature and in the presence of an additive lipid, cholesterol. Atom-specific NOE build-up curves for protons of water and those of MO are also given. The results presented herein provide new insight into the physicochemical properties and behaviour of water in LCPs, and demonstrate an additional avenue for experimental study of water-lipid interactions and hydration dynamics in model membranes and nanomaterials using 2D NOE NMR spectroscopy.

2.
J Phys Chem Lett ; : 8520-8525, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133818

RESUMO

In model membrane systems, such as lipidic cubic phases (LCPs), 1H NMR spectra are dominated by resonances from water and lipid molecules. The measurement of translational diffusion of peptides/molecules encapsulated in LCPs using conventional 1H pulsed-gradient spin-echo (PGSE) NMR is, therefore, immensely difficult due to the dynamic range caused by the intense resonance(s) from the surrounding environment. The present study reports the use of a band-selective short transient PGSE sequence, avoiding the perturbation of both hydration water and lipids, for measuring the diffusion of molecules encapsulated within the lipid bilayer and the aqueous channels of LCPs.

3.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830495

RESUMO

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.


Assuntos
Antioxidantes , Polissacarídeos , Alga Marinha , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Trato Gastrointestinal Superior/metabolismo , Trato Gastrointestinal Superior/efeitos dos fármacos , Peso Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Digestão/efeitos dos fármacos , Sulfatos/química , Glucanos/química , Glucanos/farmacologia , Phaeophyceae/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA