Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Interv Aging ; 19: 807-815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751857

RESUMO

Objective: To explore the suitable population of CT value for predicting low bone mineral density (low-BMD). Methods: A total of 1268 patients who underwent chest CT examination and DXA within one-month period retrospectively analyzed. The CT attenuation values of trabecular bone were measured in mid-sagittal plane from thoracic vertebra 7 (T7). Receiver operating characteristic (ROC) curves were used to evaluate the ability to diagnose low-BMD. Results: The AUC for diagnosing low BMD was larger in women than in men (0.894 vs 0.744, p < 0.05). The AUC increased gradually with the increase of age but decreased gradually with the increase in height and weight (p < 0.05). In females, when specificity was adjusted to approximately 90%, a threshold of 140.25 HU has a sensitivity of 69.3%, which is higher than the sensitivity of 36.5% in males for distinguishing low-BMD from normal. At the age of 70 or more, when specificity was adjusted to approximately 90%, a threshold of 126.31 HU has a sensitivity of 76.1%, which was higher than that of other age groups. Conclusion: For patients who had completed chest CTs, the CT values were more effective in predicting low-BMD in female, elderly, lower height, and lower weight patients.


Assuntos
Densidade Óssea , Curva ROC , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Adulto , Absorciometria de Fóton , Idoso de 80 Anos ou mais , Osteoporose/diagnóstico por imagem , Sensibilidade e Especificidade , Fatores Etários , Programas de Rastreamento/métodos , Estatura
2.
Genome Biol ; 25(1): 116, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715020

RESUMO

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Assuntos
Genoma , Variação Estrutural do Genoma , Animais , Sus scrofa/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Mapeamento Cromossômico
3.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177344

RESUMO

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Suínos/genética , Animais , Humanos , Genótipo , Fenótipo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA