RESUMO
Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.
Assuntos
Liofilização , Linfonodos , Mesotelina , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfonodos/imunologia , Linfócitos T/imunologia , Linfócitos T/citologia , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologiaRESUMO
Lipid nanoparticle-based drug delivery systems have a profound clinical impact on nucleic acid-based therapy and vaccination. Recombinant human insulin, a negatively-charged biomolecule like mRNA, may also be delivered by rationally-designed positively-charged lipid nanoparticles with glucose-sensing elements and be released in a glucose-responsive manner. Herein, we have designed phenylboronic acid-based quaternary amine-type cationic lipids that can self-assemble into spherical lipid nanoparticles in an aqueous solution. Upon mixing insulin and the lipid nanoparticles, a heterostructured insulin complex is formed immediately arising from the electrostatic attraction. In a hyperglycemia-relevant glucose solution, lipid nanoparticles become less positively charged over time, leading to reduced attraction and subsequent insulin release. Compared with native insulin, this lipid nanoparticle-based glucose-responsive insulin shows prolonged blood glucose regulation ability and blood glucose-triggered insulin release in a typeâ 1 diabetic mouse model.
Assuntos
Glucose , Insulina , Camundongos , Animais , Humanos , Glicemia , Sistemas de Liberação de MedicamentosRESUMO
Cellular metabolism plays a major role in the regulation of inflammation. The inflammatory macrophages undergo a wide-range of metabolic rewriting due to the production of significant amount of itaconate metabolite from cis-aconitate in the tricarboxylic acid cycle. This itaconate molecule has been recently described as a promising immunoregulator. However, its function and mode of action on macrophages and tissue repair and regeneration are yet unclear. Herein, the itaconate-derivative dimethyl itaconate (DMI) suppresses the IL-23/IL-17 inflammatory axis-associated genes and promotes antioxidant nuclear factor erythroid 2-related factor 2 target genes. The poly-ε-caprolactone (PCL)/DMI nanofibers implanted in mice initially maintain inflammation by suppressing anti-inflammatory activity and particular inflammation, while at later stage promotes anti-inflammatory activity for an appropriate tissue repair. Furthermore, the PCL/DMI nanofiber patches show an excellent myocardial protection by reducing infarct area and improving ventricular function via time-dependent regulation of myocardium-associated genes. This study unveils potential DMI macrophage modulatory functions in tissue microenvironment and macrophages rewriting for proper tissue repair.
Assuntos
Nanofibras , Animais , Infarto , Inflamação , Macrófagos , Camundongos , SuccinatosRESUMO
The excessive reactive oxygen species (ROS) and hypoxia deteriorate the inflammation-related diseases such as myocardial infarction (MI), and thereby deter the normal tissue repair and recovery and further lead to severe fibrosis and malfunction of tissues and organs. In particular, the MI has become one of the leading causes of death nowadays. In this study, a novel type of injectable hydrogel with dual functions of ROS scavenging and O2 generating is fabricated for MI treatment in vivo. The hydrogel is formed within 3 s from the synthetic ROS-cleavable hyperbranched polymers and methacrylate hyaluronic acid (HA-MA) under UV-irradiation. Addition of biocompatible and applicable catalase in vivo enables the further transition of H2 O2 , a major type of ROS, to O2 and H2 O. Results of rat MI model demonstrate that this hydrogel can significantly remove excessive ROS, inhibit cell apoptosis, increase M2/M1 macrophage ratio, promote angiogenesis, reduce infarcted area, and improve cardiac functions. With the appropriate degradation rate, simple structure and composition without cell seeding, and very excellent MI therapeutic effect, this ROS scavenging and O2 generating hydrogel has a great promise to be applied clinically.
Assuntos
Hidrogéis , Infarto do Miocárdio , Animais , Ácido Hialurônico , Infarto do Miocárdio/tratamento farmacológico , Ratos , Espécies Reativas de Oxigênio , CicatrizaçãoRESUMO
Tissue regeneration involves versatile types of cells. The accumulation and disorganized behaviors of undesired cells impair the natural healing process, leading to uncontrolled immune response, restenosis, and/or fibrosis. Cell-selective surfaces and interfaces can have specific and positive effects on desired types of cells, allowing tissue regeneration with restored structures and functions. This review outlines the importance of surfaces and interfaces of biomaterials with cell-selective properties. The chemical and biological cues including peptides, antibodies, and other molecules, physical cues such as topography and elasticity, and physiological cues referring mainly to interactions between cells-cells and cell-chemokines or cytokines are effective modulators for achieving cell selectivity upon being applied into the design of biomaterials. Cell-selective biomaterials have also shown practical significance in tissue regeneration, in particular for endothelialization, nerve regeneration, capture of stem cells, and regeneration of tissues of multiple structures and functions.
Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Anticorpos/química , Anticorpos/farmacologia , Materiais Biocompatíveis/farmacologia , Comunicação Celular , Endotélio Vascular/citologia , Humanos , Regeneração Nervosa , Peptídeos/química , Peptídeos/farmacologia , Regeneração , Células-Tronco/fisiologia , Propriedades de SuperfícieRESUMO
Despite of the recent advances in regulatory T cell (Treg) therapy, a limited number of available cells and specificity at the desired tissue site have severely compromised their efficacy. Herein, an injectable drug-releasing (MTK-TK-drug) microgel system in response to in situ stimulation by reactive oxygen species (ROS) was constructed with a coaxial capillary microfluidic system and UV curing. The spherical microgels with a size of 150 µm were obtained. The MTK-TK-drug microgels efficiently converted the pro-inflammatory Th17 cells into anti-inflammatory regulatory T cells (Treg) cells in vitro, and the ROS-scavenging materials synergistically enhanced the effect by modulating the inflammation microenvironment. Thus, the microgels significantly reduced cardiomyocyte apoptosis and decreased the inflammatory response in the early stages of post-myocardial infarction (MI) in vivo, thereby reducing fibrosis, promoting vascularization, and preserving cardiac function. Overall, our results indicate that the MTK-TK-drug microgels can attenuate the inflammatory response and improve MI therapeutic effects in vivo.
Assuntos
Microgéis , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio , Infarto do Miocárdio/tratamento farmacológico , Linfócitos T Reguladores , MicrofluídicaRESUMO
The limited infiltration and persistence of chimeric antigen receptor (CAR)-T cells is primarily responsible for their treatment deficits in solid tumors. Here, we present a three-dimensional scaffold, inspired by the physiological process of T-cell proliferation in lymph nodes. This scaffold gathers the function of loading, delivery, activation and expansion for CAR-T cells to enhance their therapeutic effects on solid tumors. This porous device is made from poly(lactic-co-glycolic acid) by a microfluidic technique with the modification of T-cell stimulatory signals, including anti-CD3, anti-CD28 antibodies, as well as cytokines. This scaffold fosters a 50-fold CAR-T cell expansion in vitro and a 15-fold cell expansion in vivo. Particularly, it maintains long-lasting expansion of CAR-T cells for up to 30 days in a cervical tumor model and significantly inhibits the tumor growth. This biomimetic delivery strategy provides a versatile platform of cell delivery and activation for CAR-T cells in treating solid tumors.
RESUMO
Myocardial infarction (MI) is a leading cause of death globally. Stem cell therapy is considered a potential strategy for MI treatment. Transplantation of classic stem cells including embryonic, induced pluripotent and cardiac stem cells exhibited certain repairing effect on MI via supplementing cardiomyocytes, however, their clinical applications were blocked by problems of cell survival, differentiation, functional activity and also biosafety and ethical concerns. Here, we introduced human amniotic epithelial stem cells (hAESCs) featured with immunomodulatory activities, immune-privilege and biosafety, for constructing a stem cell cardiac patch based on porous antioxidant polyurethane (PUR), which demonstrated decent hAESCs compatibility. In rats, the administration of PUR-hAESC patch significantly reduced fibrosis and facilitated vascularization in myocardium after MI and consequently improved cardiac remodeling and function. Mechanistically, the patch provides a beneficial microenvironment for cardiac repair by facilitating a desirable immune response, paracrine modulation and limited oxidative milieu. Our findings may provide a potential therapeutic strategy for MI.
Assuntos
Âmnio , Antioxidantes , Células Epiteliais , Infarto do Miocárdio , Poliuretanos , Alicerces Teciduais , Infarto do Miocárdio/terapia , Poliuretanos/química , Humanos , Animais , Alicerces Teciduais/química , Âmnio/citologia , Ratos , Transplante de Células-Tronco/métodos , Ratos Sprague-Dawley , Pericárdio , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Células-Tronco/citologia , Miocárdio/patologiaRESUMO
Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient-similarly to endogenous insulin-for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes.
RESUMO
Ocular alkali burn is a serious ophthalmic emergency. Highly penetrative alkalis cause strong inflammatory responses leading to persistent epithelial defects, acute corneal perforation and severe scarring, and thereby persistent pain, loss of vision and cicatricial sequelae. Early and effective anti-inflammation management is vital in reducing the severity of injury. In this study, a double network biomaterial was prepared by compounding electrospinning nanofibres of thioketal-containing polyurethane (PUTK) with a reactive oxygen species (ROS)-scavenging hydrogel (RH) fabricated by crosslinking poly(poly(ethylene glycol) methyl ether methacrylate-co-glycidyl methacrylate) with thioketal diamine and 3,3'-dithiobis(propionohydrazide). The developed PUTK/RH patch exhibited good transparency, high tensile strength and increased hydrophilicity. Most importantly, it demonstrated strong antioxidant activity against H2O2 and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH). Next, a rat corneal alkali burn model was established, and the PUTK/RH patch was transplanted on the injured cornea. Reduced inflammatory cell infiltration was revealed by confocal microscopy, and lower expression levels of genes relative to inflammation, vascularization and scarring were identified by qRT-PCR and western blot. Fluorescein sodium dyeing, hematoxylin and eosin (H&E) staining and immunohistochemical staining confirmed that the PUTK/RH patch could accelerate corneal wound healing by inhibiting inflammation, promoting epithelial regeneration and decreasing scar formation. STATEMENT OF SIGNIFICANCE: Ocular alkali burn is a serious ophthalmic emergency, characterized with persistent inflammation and irreversible vision loss. Oxidative stress is the main pathological process at the acute inflammatory stage, during which combined use of glucocorticoids and amniotic membrane transplantation is the most widely accepted treatment. In this study, we fabricated a polyurethane electrospun nanofiber membrane functionalized with a ROS-scavenging hydrogel. This composite patch could be a promising amniotic membrane substitute, possessing with a transparent appearance, elasticity and anti-inflammation effect. It could be easily transplanted onto the alkali-burned corneas, resulting in a significant inhibition of stromal inflammation and accelerating the recovery of corneal transparency. The conception of ROS-scavenging wound patch may offer a new way for ocular alkali burn.
Assuntos
Queimaduras Químicas , Lesões da Córnea , Queimaduras Oculares , Ratos , Animais , Cicatriz/patologia , Espécies Reativas de Oxigênio/metabolismo , Queimaduras Químicas/terapia , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Peróxido de Hidrogênio/farmacologia , Poliuretanos/farmacologia , Córnea/patologia , Cicatrização , Lesões da Córnea/metabolismo , Inflamação/patologia , Queimaduras Oculares/metabolismo , Queimaduras Oculares/patologiaRESUMO
Frequent insulin injections remain the primary method for controlling the blood glucose level of individuals with diabetes mellitus but are associated with low compliance. Accordingly, oral administration has been identified as a highly desirable alternative due to its non-invasive nature. However, the harsh gastrointestinal environment and physical intestinal barriers pose significant challenges to achieving optimal pharmacological bioavailability of insulin. As a result, researchers have developed a range of materials to improve the efficiency of oral insulin delivery over the past few decades. In this review, we summarize the latest advances in material design that aim to enhance insulin protection, permeability, and glucose-responsive release. We also explore the opportunities and challenges of using these materials for oral insulin delivery.
RESUMO
Patients with diabetes suffer from a variety of complications and easily develop diabetic chronic wounds. The microenvironment of diabetic wounds is characterized by an excessive amount of reactive oxygen species (ROS) and an imbalance of proinflammatory and anti-inflammatory cells/factors, which hinder the regeneration of chronic wounds. In the present study, a wound dressing with immunomodulation and electroconductivity properties was prepared and assayed in vitro and in vivo. [2-(acryloyloxy) ethyl] Trimethylammonium chloride (Bio-IL) and gelatin methacrylate (GelMA) were 3D printed onto a doxycycline hydrochloride (DOXH)-loaded and ROS-degradable polyurethane (PFKU) nanofibrous membrane, followed by UV irradiation to obtain conductive hydrogel strips. DOXH was released more rapidly under a high ROS environment. The dressing promoted migration of endothelial cells and polarization of macrophages to the anti-inflammatory phenotype (M2) in vitro. In a diabetic rat wound healing test, the combination of conductivity and DOXH was most effective in accelerating wound healing, collagen deposition, revascularization, and re-epithelialization by downregulating ROS and inflammatory factor levels as well as by upregulating the M2 macrophage ratio. STATEMENT OF SIGNIFICANCE: The microenvironment of diabetic wounds is characterized by an excessive amount of reactive oxygen species (ROS) and an imbalance of proinflammatory and anti-inflammatory cells/factors, which hinder the regeneration of chronic wounds. Herein, a wound dressing composed of a DOXH-loaded ROS-responsive polyurethane membrane and 3D-printed conductive hydrogel strips was prepared, which effectively accelerated skin regeneration in diabetic wounds in vivo with better epithelialization, angiogenesis, and collagen deposition. DOXH regulated the dysfunctional wound microenvironment by ROS scavenging and polarizing macrophages to M2 phenotype, thereby playing a dominant role in diabetic wound regeneration. This design may have great potential for preparing other similar materials for the therapy of other diseases with excessive inflammation or damage to electrophysiological organs, such as nerve defect and myocardial infarction.
Assuntos
Diabetes Mellitus , Nanofibras , Animais , Cloretos/farmacologia , Colágeno/farmacologia , Doxiciclina/farmacologia , Células Endoteliais , Gelatina/farmacologia , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Poliuretanos/farmacologia , Ratos , Espécies Reativas de Oxigênio , CicatrizaçãoRESUMO
Acute lung injury (ALI) is associated with excessive inflammatory response, leading to acute respiratory distress syndrome (ARDS) without timely treatment. A fewer effective drugs are available currently to treat the ALI/ARDS. Herein, a therapeutic nanoplatform with reactive oxygen species (ROS)-responsiveness was developed for the regulation of inflammation. Dexamethasone acetate (Dex) was encapsulated into poly(thioketal) polymers to form polymeric nanoparticles (NPs) (PTKNPs@Dex). The NPs were composed of poly(1,4-phenyleneacetonedimethylene thioketal) (PPADT) and polythioketal urethane (PTKU), in which the thioketal bonds could be cleaved by the high level of ROS at the ALI site. The PTKNPs@Dex could accumulate in the pulmonary inflammatory sites and release the encapsulated payloads rapidly, leading to the decreased ROS level, less generation of pro-inflammatory cytokines, and reduced lung injury and mortality of mice. RNA sequencing (RNA-seq) analysis showed that the therapeutic efficacy of the NPs was associated with the modulation of many immune and inflammation-linked pathways. These findings provide a newly developed nanoplatform for the efficient treatment of ALI/ARDS.
RESUMO
Both of the surface topographical features and distribution of biochemical cues can influence the cell-substrate interactions and thereby tissue regeneration in vivo. However, they have not been combined simultaneously onto a biodegradable scaffold to demonstrate the synergistic role so far. In this study, a proof-of-concept study is performed to prepare micropatterns and peptide gradient on the inner wall of a poly (D,L-lactide-co-caprolactone) (PLCL) guidance conduit and its advantages in regeneration of peripheral nerve in vivo. After linear ridges/grooves of 20/40 µm in width are created on the PLCL film, its surface is aminolyzed in a kinetically controlled manner to obtain the continuous gradient of amino groups, which are then transferred to CQAASIKVAV peptide density gradient via covalent coupling of glutaraldehyde. The Schwann cells are better aligned along with the stripes, and show a faster migration rate toward the region of higher peptide density. Implantation of the nerve guidance conduit made of the PLCL film having both the micropatterns and peptide gradient can significantly accelerate the regeneration of sciatic nerve in terms of rate, function recovery and microstructures, and reduction of fibrosis in muscle tissues. Moreover, this nerve conduit can also benefit the M2 polarization of macrophages and promote vascularization in vivo.
RESUMO
Excessive reactive oxygen species (ROS) generated after myocardial infarction (MI) result in the oxidative injury in myocardium. Implantation of antioxidant biomaterials, without the use of any type of drugs, is very appealing for clinical translation, leading to the great demand of novel biomaterials with high efficiency of ROS elimination. In this study, a segmented polyurethane (PFTU) with a high density of ROS-scavenging backbone units is synthesized by the reaction of poly(thioketal) dithiol (PTK) and poly(propylene fumarate) diol (PPF) (soft segments), thioketal diamine (chain extender), and 1,6-hexamethylene diisocyanate (HDI). Its chemical structure is verified by gel permeation chromatography (GPC), 1 H nuclear magnetic resonance (1 H NMR) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The electrospun composite PFTU/gelatin (PFTU/Gt) fibrous patches show good antioxidation capacity and ROS-responsive degradation in vitro. Implantation of the PFTU/gelatin patches on the heart tissue surface in MI rats consistently decreases the ROS level, membrane peroxidation, and cell apoptosis at the earlier stage, which are not observed in the non-ROS-responsive polyurethane patch. Inflammation and fibrosis are also reduced in the PFTU/gelatin-treated hearts, resulting in the reduced left ventricular remodeling and better cardiac functions postimplantation for 28 d.
Assuntos
Infarto do Miocárdio , Poliuretanos , Animais , Fibrose , Infarto do Miocárdio/tratamento farmacológico , Estresse Oxidativo , Poliuretanos/química , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Myocardial infarction (MI) is still a major cause of mortality and morbidity worldwide. Elastomer cardiac patches have shown great potential in preventing left ventricle (LV) remodeling post-MI by providing mechanical support to the infarcted myocardium. Improved therapeutic outcomes are expected by mediating pathological processes in the necrosis phase, inflammation phase, and fibrosis phase, through orchestrated biological and mechanical treatments. In this study, a mechanically robust multifunctional cardiac patch integrating reactive oxygen species (ROS)-scavenging, anti-inflammatory, and pro-angiogenic capabilities was developed to realize the integrative strategy. An elastomeric polyurethane (PFTU) containing ROS-sensitive poly (thioketal) (PTK) and unsaturated poly (propylene fumarate) (PPF) segments was synthesized, which was further clicked with pro-angiogenic Arg-Glu-Asp-Val (REDV) peptides to obtain PFTU-g-REDV (PR), and was formulated into a macroporous patch containing rosuvastatin (PRR). The mechanical support and multifunctional effects of the patch were confirmed in a rat MI model in vivo compared to the patches with only mechanical support, leading to reduced cell apoptosis, suppressed local inflammatory response, alleviated fibrosis, and induced angiogenesis. The cardiac functions and LV morphology were also well maintained. These results demonstrate the advantages of the integrated and orchestrated treatment strategy in MI therapy.
Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Elastômeros , Fibrose , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Espécies Reativas de OxigênioRESUMO
Selective adhesion and migration of urethral epithelial cells (HUCs) over fibroblasts (FIBs) are very important in the reconstruction of the urethral epithelial layer and prevention of ureteral scarring and stenosis. In this study, unsaturated polyurethane (PPFU-CO-SS) films were co-grafted with a cell-resisting poly(ethylene glycol) (PEG) layer and HUC-selective Cys-Ala-Gly (CAG) peptides, whose physicochemical changes were confirmed by X-ray photon spectroscopy, fluorescence spectroscopy and water contact angle measurements. The adhesion and activation of platelets on the PEG/CAG grafted surface were significantly reduced compared to those on the PPFU-CO-SS, resulting in a similar status as that on a PEG-grafted surface. The HUC-selective material could obviously promote the adhesion and migration of HUCs. The ratio of the urethral epithelial cells to fibroblasts on the PEG/CAG grafted surface was nearly 3-fold that on the unmodified PPFU-CO-SS in a co-culture competitive environment. The urethral epithelial cells cultured on the PEG/CAG grafted surface also had the highest migration rate, which was 2.24-fold compared to that on the PPFU-CO-SS control.
Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Células Epiteliais/efeitos dos fármacos , Oligopeptídeos/farmacologia , Poliuretanos/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Humanos , Teste de Materiais , Oligopeptídeos/química , Poliuretanos/químicaRESUMO
Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration, controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.
RESUMO
For conductive hydrogels applied in biosensors, wearable devices and so forth, multifunctionality is an inevitable trend of development to meet various practical requirements and enhance human experience. Herein, inspired by nanocomposite, double-network (DN) and mussel chemistry, a new Graphene oxide@Dopamine/Alginate/Poly(acrylic acid-co-acrylamide) [GO@DA/Alginate/P(AAc-co-AAm)] hydrogel was fabricated through one-pot in-situ radical copolymerization. GO@DA nanofillers, prepared via GO confined DA polymerization, imparted the hydrogel with remarkable adhesiveness. Alginate/P(AAc-co-AAm) DN matrix, physically and chemically crosslinked by Fe3+ and N,N'-Methylenebisacrylamide, made hydrogels ultrastretchable, self-healing and biocompatible. With contents of DA and alginate accurately regulated, the tensile strength, elongation, adhesion strength and conductivity of the optimal hydrogel could reach 320.2 kPa, 1198 %, 36.9 kPa and 3.24 ± 0.12 S/m, respectively. What's more notable was that the synergistic integration of repeatable adhesiveness, strain sensitivity, use stability, self-healing ability and biocompatibility provided such hydrogels with tremendous possibility of practical application for strain sensors.
Assuntos
Acrilamidas/química , Adesivos/química , Alginatos/química , Bivalves/química , Dopamina/química , Grafite/química , Hidrogéis/química , Nanogéis/química , Adesividade , Animais , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Humanos , Camundongos , Células NIH 3T3 , Testes do Emplastro , Polimerização , Resistência à TraçãoRESUMO
Calcified cartilage is a mineralized osteochondral interface region between the hyaline cartilage and subchondral bone. There are few reported artificial biomaterials that could offer bioactivities for substantial reconstruction of calcified cartilage. Herein we developed new poly(L-lactide-co-caprolactone) (PLCL)-based trilayered fibrous membranes as a functional interface for calcified cartilage reconstruction and superficial cartilage restoration. The trilayered membranes were prepared by the electrospinning technique, and the fibrous morphology was maintained when the chondroitin sulfate (CS) or bioactive glass (BG) particles were introduced in the upper or bottom layer, respectively. Although 30% BG in the bottom layer led to a significant decrease in tensile resistance, the inorganic ion release was remarkably higher than that in the counterpart with 10% BG. The in vivo studies showed that the fibrous membranes as osteochondral interfaces exhibited different biological performances on superficial cartilage restoration and calcified cartilage reconstruction. All of the implanted host hyaline cartilage enabled a self-healing process and an increase in the BG content in the membranes was desirable for promoting the repair of the calcified cartilage with time. The histological staining confirmed the osteochondral interface in the 30% BG bottom membrane maintained appreciable calcified cartilage repair after 12 weeks. These findings demonstrated that such an integrated artificial osteochondral interface containing appropriate bioactive ions are potentially applicable for osteochondral interface tissue engineering.