Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(39): 11429-11446, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34559540

RESUMO

The creeping-flow theory describing evolution and steady-state shape of two-dimensional ionic-conductor drops under the action of surface tension and the subcritical (in terms of the electric Bond number) electric field imposed in the substrate plane is developed. On the other hand, the experimental data are acquired for drops impacted or softly deposited on dielectric surfaces of different wettability and subjected to an in-plane subcritical electric field. Even though the experimental situation involves viscous friction of drops with the substrates and wettability-driven motion of the contact line, the comparison to the theory reveals that it can accurately describe the steady-state drop shape on a non-wettable substrate. In the latter case, the drop is sufficiently raised above the substrate, which diminishes the three-dimensional effects, making the two-dimensional description (lacking the no-slip condition at the substrate and wettability-driven motion of the contact line) relevant. Accordingly, it is demonstrated how the subcritical electric field deforms the initially circular drops until an elongated steady-state configuration is reached. In particular, the surface tension tends to round off the non-circular drops stretched by the electric Maxwell stresses imposed by the electrodes. A more pronounced substrate wettability leads to more elongated steady-state configurations observed experimentally than those predicted by the two-dimensional theory. The latter cases reveal significant three-dimensional effects in the electrically driven drop stretching. In the supercritical electric fields (corresponding to the supercritical electric Bond numbers), the electrical stretching of drops predicted by the present linearized two-dimensional theory results in splitting into two separate droplets. This scenario is corroborated by the predictions of the fully nonlinear results for similar electrically stretched bubbles in the creeping-flow regime available in the literature as well as by the present experimental results on a substrate with slip.

2.
Langmuir ; 36(16): 4357-4369, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32240589

RESUMO

Here we aim at understanding and modeling of macroscopic interactions and sliding motion of curved filaments during muscles' isometric action in which tension is developed without overall contraction. A generic dynamic model of a curved elastic filament undergoing sliding, twisting, and unraveling around a cylindrical filament affected by the interfilament friction force is developed in full detail. In particular, the dynamic equations describing the general sliding motion of a curved filament wrapped around a cylindrical filament and pulled by a constant force applied to a free end are derived and solved numerically; the other end of the curved filament is considered to be fixed at the cylindrical one. The model predicts propagation of an elastic wave over the wrapped filament determined by the filament stiffness and the interfilament friction. The wrapped filament deformation and its ultimate arrest are predicted, and the final configurations of such filaments are revealed. Accordingly, the wrapped filament strain is predicted as a function of time for different values of the friction coefficient. The potential applications and possible biomechanical links of the proposed generic model are also discussed.

3.
Langmuir ; 35(34): 11080-11088, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31423785

RESUMO

A novel approach is developed to predict the thickness of the equivalent one-dimensional Stern layer near conducting electrodes subjected to high voltage and carrying electric current. The nonspecific (nonelectric) ion adsorption responsible for the formation of the Stern compact layer at the electrode surface is attributed to the Langmuir-Brunauer-Emmett-Teller mechanism. The compact Stern layer is implied to be intrinsically two-dimensional and forming on the oxide or impurity islands on the electrode surface, which prevents electron transfer to or from the adsorbed ions. On the other hand, electrons are transferred through the open parts of the metallic electrode surface by electron transfer faradaic reactions characterized by the Frumkin-Butler-Volmer kinetics. Then, the one-dimensional Stern layer appears to be an approximation of the abovementioned two-dimensional model. In the framework of this model, the equivalent one-dimensional Stern layer thickness is predicted, rather than used as an adjustable parameter, as frequently done in the literature.

4.
Langmuir ; 35(45): 14458-14464, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657941

RESUMO

A novel approach presented in this work allows one to calculate the potential drop across the compact layer in electrostatic atomization with high voltages applied at the electrode. Ionic conductor liquids employed in electrostatic atomization have a low dielectric constant, which causes almost all of the potential drop across the double layer to occur inside the compact layer. In the previous article of this group (Sankarn, A., et al. Langmuir 2017, 33, 1375-1384), it was shown that faradaic reactions in the kinetics-limited regime are responsible for liquid electrification in electrostatic atomization. Here, we apply the Frumkin slow discharge theory to calculate the electric potential at the interface of the compact and diffuse layers. The electric potential value at the interface of the compact and diffuse layers is required in computational models accounting for the discharge of counterions due to faradaic reactions when solving the ionic transport equations. The activation energy of the electron transfer reaction is calculated through the Marcus theory. Knowing the counterion flux value at the electrode surface from the concurrent experimental measurements, the ionic concentration and net charge distribution across the polarized diffuse layer are also found from the numerical simulations. Considering canola oil to be the ionic conductor liquid, two different examples are used to demonstrate the application of this approach to calculate the electric potential at the interface of compact and diffuse layers.

5.
Int J Heat Mass Transf ; 135: 44-51, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30880830

RESUMO

Vapor bubble nucleation during subcooled boiling on thin strip wire heaters and the resultant vibrations are studied experimentally. The results show how the subcooled boiling-induced vibrations (SBIV) are intrinsically related to the hydrodynamic flow induced near the heated wires. It is shown that the dominant force responsible for the vibrations in this case is imposed by a localized strong hydrodynamic flow rather than by the vapor recoil force. The dominant frequency of SBIV is the fundamental frequency of the wire, regardless of the individual departure frequencies of the nucleating vapor bubbles. The recorded wire vibrations are used to quantify the hydrodynamic flow. It is shown experimentally and theoretically that the flow fades exponentially with distance from the wire.

6.
Langmuir ; 34(34): 10169-10180, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30063834

RESUMO

This paper is concerned with simulation of the droplet impact on a dielectric surface, referred to as the dynamic electrowetting-on-dielectric (DEWOD). In particular, we seek to shed more light on the fundamental processes occurring during the impact of an electrically conducting droplet onto a dielectric surface with and without an applied voltage. The liquid in the droplet is an ionic conductor (a leaky dielectric). This work employs an approach based on Cahn-Hilliard-Navier-Stokes (CHNS) modeling. The simulations are validated by predicting the equilibrium contact angle, droplet oscillations, and charge density estimation. Then, four cases of droplet impact are studied, namely, the impact onto a surface with no voltage applied and the impacts onto the surfaces with 2, 4, and 6 kV applied. The modeling results of water droplet impact allow for direct comparison with the experimental results reported by Lee et al. [ Langmuir 2013, 29, 7758]. The results reveal the electric field, the body forces acting on the droplet, the velocity and pressure fields inside and outside the droplet, as well as the free charge density and the electric energy density. The model predicts the droplet shape evolution (e.g., the spreading distance over the surface and the rebound height) under different conditions that are consistent with the experimental observations. Thus, our findings provide new qualitative and quantitative insights into the droplet manipulation that can be used in novel applications of the DEWOD phenomenon.

7.
Int J Heat Mass Transf ; 127(Pt C): 857-866, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30467441

RESUMO

Pool boiling of ethanol and self-rewetting fluids on bare copper surface and copper surface with polymer nanofibers were studied experimentally. No significant effect of the depths of ethanol layer on the heat removal rate was found. That indicates that only the heat transfer in the liquid microlayer near the heater surface is a dominant factor. As a result, one can expect that self-rewetting fluids can significantly affect boiling performance. Accordingly, several alcohol solutions including the self-rewetting ones were investigated as working fluids in the boiling chamber. It was found that at the 0.1% (v/v) concentration, only the high carbon-alcohol, n-heptanol in aqueous solution, improved boiling heat transfer considerably. Furthermore, the experimental study of the effect of surface nano-texture on boiling characteristics was undertaken. For that aim, polyacrylonitrile (PAN) nanofibers were deposited onto the copper heater surface. Measurements of the boiling curve revealed a detrimental effect of such nano-texture in the case of such working fluids as ethanol and self-rewetting n-heptanol solutions. On the other hand, when polystyrene (PS) nanofibers were deposited onto the copper heater surface instead of PAN nanofibers, a significant improvement in boiling heat transfer was observed. The more hydrophobic nature of PS compared to copper is responsible for this effect, i.e. is the reason of the heat transfer enhancement on such a nano-textured surface compared to the pure copper one. In addition, the critical heat flux in the case of n-heptanol solution was found to be reduced considerably on the PS nano-textured surface compared to the pure copper one. This stems from the increased propensity of the heater surface to be covered by vapor, while the rewetting is insufficiently effective at high heat fluxes in presence of PS nanofibers.

8.
Langmuir ; 33(40): 10663-10672, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28893068

RESUMO

Here we study experimentally the behavior of liquid healing agents released in vascular core-shell nanofiber mats used in self-healing engineered materials. It is shown that wettability-driven spreading of liquid drops is accompanied by the imbibition into the nanofiber matrix, and its laws deviate from those known for spreading on an intact surface. We also explore coalescence of the released drops on nanofiber mats, in particular, coalescence of drops of resin monomer and cure important for self-healing. The coalescence process is also affected by the imbibition into the pores of an underlying nanofiber mat. A theoretical model is developed to account for the imbibition effect on drop coalescence.

9.
Angew Chem Int Ed Engl ; 56(12): 3285-3288, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28194915

RESUMO

Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel-like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom-up process. In contrast, the spongy gels are formed by a top-down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel-like material. The spongy gels are independent of a time-consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non-wetting liquids dispersed in the sponge.

10.
Mol Pharm ; 13(1): 295-305, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26635214

RESUMO

Nanofibers represent an attractive novel drug delivery system for prolonged and controlled release. However, sustained release of hydrophilic drugs, like ciprofloxacin hydrochloride (CIP), from polymeric nanofibers is not an easy task. The present study investigates the effect of different hydrophobic polymers (PCL and PMMA) alone in monolithic nanofibers or with hydrophilic polymers (PVA, PEO, and chitosan) in blended nanofibers aiming to achieve sustained CIP release. CIP release from PCL nanofibers was 46% and from PMMA just 1.5% over 40 day period. Thus, PMMA holds great promise for modification of CIP release from blended nanofibers. PMMA blends with 10% PEO, PVA, or chitosan were used to electrospin nanofibers from solution in the mixture of acetic and formic acid. These nanofibers exhibited different drug-release profiles: PEO containing nanofiber mats demonstrated high burst effect, chitosan containing mats revealed very slow gradual release, and PVA containing mats yielded smaller burst effect with favorable sustained release. We have also shown that gradual sustain release of antibiotic like CIP can be additionally tuned over 18 days with various blend ratios of PMMA with PVA or chitosan reaching almost 100%. A mathematical model in agreement with the experimental observation revealed that the sustained CIP release from the blended nanofibers corresponded to the two-stage desorption process.


Assuntos
Ciprofloxacina/química , Nanofibras/química , Polímeros/química , Polimetil Metacrilato/química , Interações Hidrofóbicas e Hidrofílicas
11.
Mol Pharm ; 13(4): 1393-404, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26950163

RESUMO

Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections.


Assuntos
Ciprofloxacina/química , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/química , Preparações de Ação Retardada , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Langmuir ; 32(24): 6148-62, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27166506

RESUMO

This work deals with the anti-icing behavior at subfreezing temperatures of CeO2/polyurethane nanocomposite coatings with and without a stearic acid treatment on aluminum alloy substrates. The samples ranged from superhydrophilic to superhydrophobic depending on surface morphology and surface functionalization. X-ray photoelectron spectroscopy was used to determine the surface composition. The anti-icing behavior was studied both by importing fog into a chamber with controlled atmosphere at subzero temperatures and by conducting experiments with drop impact velocities of 1.98, 2.8, 3.83, and 4.95 m/s. It was found that the ice-phobicity of the ceramic/polymer nanocomposite coating was dependent on the surface roughness and surface energy. Water drops were observed to completely rebound from the surface at subfreezing temperatures from superhydrophobic surfaces with small contact angle hysteresis regardless of the impact velocity, thus revealing the anti-icing capability of such surfaces.

13.
Langmuir ; 31(12): 3727-37, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25751660

RESUMO

We demonstrate, for the first time, electrostatically sprayed bismuth vanadate (BiVO4) thin films for photoelectrochemical water splitting. Characterization of these films by X-ray diffraction, Raman scattering, and high-resolution scanning electron microscopy analyses revealed the formation of nanotextured pillar-like structures of highly photoactive monoclinic scheelite BiVO4. Electrosprayed BiVO4 nanostructured films yielded a photocurrent density of 1.30 and 1.95 mA/cm(2) for water and sulfite oxidation, respectively, under 100 mW/cm(2) illumination. The optimal film thickness was 3 µm, with an optimal postannealing temperature of 550 °C. The enhanced photocurrent is facilitated by formation of pillar-like structures in the deposit. We show through modeling that these structures result from the electrically-driven motion of submicron particles in the direction parallel to the substrate, as they approach the substrate, along with Brownian diffusion. At the same time, opposing thermophoretic forces slow their approach to the surface. The model of these processes proposed here is in good agreement with the experimental observations.

14.
J Colloid Interface Sci ; 674: 128-138, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38917713

RESUMO

In this study, a combination of ab initio modeling and experimental analysis is presented to investigate and elucidate the electronic conductivity of films composed of conducting polymer blend PEDOT:PSS-PEO. Detailed density functional theory (DFT) calculations, aligned with experimental data, aided at profound understanding of the chemical composition, band structure, and the mechanical behavior of these composite materials. Systematic evaluation across diverse ratios of PEDOT, PSS, and PEO revealed a pronounced transformation in electronic properties. Specifically, the addition of PEO into the polymer matrix remarkably changes the band gap, with a marked alteration observed near a PEO concentration of 52 wt-%. This adjustment led to a substantial enhancement in the electrical conductivity, exhibiting an increase by a factor of approximately 20, compared to the original PEDOT:PSS polymer. The present investigation determined the crucial role of the PEDOT to PSS ratio in band gap determination, emphasizing its significant impact on the material's electrical conductivity. Concurrently, the mechanical property analysis unveiled a consistent increase in Young's modulus, reaching up to 765.93 MPa with increased PEO content, signifying a notable mechanical stiffening of the blend. The obtained combined theoretical and experimental insights illustrate a detailed perspective on the conductivity anomalies observed in PEDOT:PSS-PEO systems, establishing a robust framework for designing highly conducting and mechanically stable polymer blends. This comprehensive approach elucidates the interplay between chemical composition and electronic behavior, offering a strategic pathway for extrusion-based manufacturing techniques such as Direct Ink Writing (DIW).

15.
Soft Robot ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557240

RESUMO

A light-weight actuator developed in this work belongs to a class of soft robots, and in a sense, resembles an octopus. Its main function is in the attachment or detachment to a solid surface driven by an electro-thermopneumatic mechanism. In this study, a suction cup similar to that of an octopus is manufactured from an elastomer, which is actuated by an electro-thermopneumatic system, mimicking the movement of the octopus' acetabular muscle. Accordingly, the adhesion force generated by such an actuator is regulated by releasing the inner air or adjusting the cup's elasticity. This actuator is designed to be an assistive device that facilitates the individual's physical strength in case of conditions related to aging or cerebellar disease, or a person who lost limbs. In this study, the actuator capabilities are demonstrated in the form of a grip-assisting glove and prosthetic attacher. Moreover, the adhesion mechanism is quantified by numerical simulations and verified experimentally.

16.
Langmuir ; 29(25): 7758-67, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23706038

RESUMO

Dynamic electrowetting-on-dielectric (DEWOD) of the unstretched and stretched Teflon is reported in the experiments with water drop impact and rebound. We explore experimentally and theoretically the situation with the capacitance different from the standard static electrowetting. Deionized water drops impact onto either an unstretched hydrophobic Teflon surface or Teflon stretched up to 250% strain normally to the impact direction. The surface roughness of the unstretched Teflon increased after stretching from 209.9 to 245.6 nm resulting in the increase in the equilibrium water contact angle from 96 ± 4° to 147 ± 5°, respectively. The electric arrangement used in the drop impact experiments on DEWOD results in a dramatically reduced capacitance and requires a much higher voltage to observe EW in comparison with the standard static case of a drop deposited on a dielectric layer and attached to an electrode. In the dynamic situation we found that as the EW sets in it can greatly reduce the superhydrophobicity of the unstretched and stretched Teflon. At 0 kV, the water drop rebound height (hmax) is higher for the stretched Teflon (hmax ≈ 5.13 mm) and lower for the unstretched Teflon (hmax ≈ 4.16 mm). The EW response of unstretched Teflon is weaker than that of the stretched one. At the voltage of 3 kV, the water drop sticks to the stretched Teflon without rebound, whereas water drops still partially rebound (hmax ≈ 2.8 mm) after a comparable impact onto the unstretched Teflon. We found a sharp dynamic EW response for the stretched Teflon. The contact angle of deionized water ranged from 147 ± 5° (superhydrophobic) to 67 ± 5° (partially hydrophilic) by applying external voltage of 0 and 3 kV, respectively. Dynamic electrowetting introduced in this work for the first time can be used to control spray cooling, painting, and coating and for drop transport in microfluidics.

17.
J Colloid Interface Sci ; 641: 643-652, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963257

RESUMO

High-entropy materials have received notable attention concern on account of their unique structure, tunable properties, and unprecedented potential applications in many fields. In this work, for the first time a NiCoMnZnMg-containing high-entropy glycerolate (HE-Gly) particles has been synthesized using a scalable solvothermal method. The HE-Gly particles were used as a precursor in design of porous high-entropy oxide (HEO) microparticles. The morphological and structural characterizations demonstrate that the temperature of the annealing process, and the composition of the metal ions in the HE-Gly precursors play important roles in determining porosity, crystallinity, and phase separation in HEOs. In fact, HE-Gly exhibited a porous structure of spinel HEOs with secreted MgO phase after annealing process at 800 °C, while the annealing process at 400 °C led to a low-crystallinity spinel phase without phase segregation. Overall, this work describes HE-Gly as a new precursor for altering the composition, crystallinity, and porosity of HEOs. This strategy is scalable for potential high mass productions, paving a new path toward industrial application of high-entropy materials.

18.
Langmuir ; 28(8): 3791-8, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22272821

RESUMO

The present work contains the results of the experiments with two tiny drops on partially wettable substrates with contact angles of 10°, 24°, 27°, and 56°, which coalesce in the regime entirely dominated by viscous forces. Both side and bottom views are examined. The results for these three-dimensional coalescence flows are compared with scaling laws and the numerical two-dimensional model developed in the present work.

20.
Soft Robot ; 9(5): 960-969, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918958

RESUMO

In this study, we fabricated a nanofiber-based electrothermo-pneumatic soft actuator (ETPSA) using electrospinning technique. The actuator uses liquid-vapor phase transition. The ETPSA developed in the present study goes beyond the limitations of the existing pneumatic soft actuators. The present ETPSA has a built-in source of heat (Joule heating from an embedded metal wire) and allows the smooth anthropomorphic movement of the actuator and, in particular, eliminates the use of external pumping systems that are indispensable in the existing pneumatic soft actuators and robots. In addition, since the present ETPSA can be operated effectively even using a portable miniature battery, it holds great promise as an adaptable soft actuator for various robotic applications with high energy efficiency and programmable motions.


Assuntos
Robótica , Robótica/métodos , Desenho de Equipamento , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA