Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Microbiol ; 76(12): 1407-1416, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555856

RESUMO

The study provides phenotypic and molecular analyses of the antibiotic resistance in 20 Lactobacillus strains including 11 strains newly isolated from fermented plant material. According to the results of disc diffusion method, 90% of tested lactobacilli demonstrated sensitivity to clindamycin and 95% of strains were susceptible to tetracycline, erythromycin, and rifampicin. Ampicillin and chloramphenicol were found to inhibit all bacteria used in this study. The vast majority of tested strains revealed phenotypic resistance to vancomycin, ciprofloxacin, and aminoglycosides. Most of Lactobacillus strains showed high minimum inhibitory concentrations (MICs) of cefotaxime, ceftriaxone, and cefazolin and therefore were considered resistant to cephalosporins. All the strains exhibited multidrug resistance. The occurrence of resistance genes was associated with phenotypic resistance, with the exception of phenotypically susceptible strains that contained genes for tetracycline (tetK, tetL) and erythromycin (ermB, mefA) resistance. The vanX gene for vancomycin resistance was among the most frequently identified among the lactobacilli (75% of strains), but the occurrence of the parC gene for ciprofloxacin resistance was sporadic (20% of strains). Our results mainly evidence the intrinsic nature of the resistance to aminoglycosides in lactobacilli, though genes for enzymatic modification of streptomycin aadA and aadE were found in 20% of tested strains. The occurrence of extended spectrum beta-lactamases (ESBL) was unknown in Lactobacillus, but our results revealed the blaTEM gene in 80% of strains, whereas blaSHV and blaOXA-1 genes were less frequent (20% and 15% of strains, respectively).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Lactobacillus/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Laticínios/microbiologia , Eritromicina/farmacologia , Alimentos Fermentados/microbiologia , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/metabolismo , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia , Vancomicina/farmacologia
2.
Protein J ; 39(1): 73-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31933011

RESUMO

Antimicrobial peptides (AMPs) are natural antagonistic tools of many bacteria and are considered as attractive antimicrobial agents for the treatment of bacteria with multidrug resistance. Lactic acid bacteria from the gastrointestinal tract of animals and human produce various AMPs inhibiting the growth of pathogens. Here we report the isolation and identification of novel Lactobacillus fermentum strain HF-D1 from the human gut producing AMPs which prevents the growth of P. aeruginosa and S. marcescens. The active fraction of peptides was obtained from the culture liquid by precipitation at 80% saturation of ammonium sulphate. For peptides identification, the precipitate was treated with guanidine hydrochloride to desorb from proteins, separated with ultrafiltration on spin columns with 10,000 MWCO, desalted with a reversed-phase chromatography and subjected to LC-MS/MS analysis. The in silico analysis of the identified 1111 peptides by using ADAM, CAMPR3 and AMPA prediction servers led to identification of the linear peptide with highly probable antimicrobial activity and further investigation of its antibacterial activity mechanism is promising. By using the dereplication algorithm, the peptide highly similar to non-ribosomal cyclic AMPs originally isolated from Staphylococcus epidermidis has been identified. This indicates that L. fermentum HF-D1 represents a novel strain producing antimicrobial peptides targeting P. aeruginosa and S. marcescens.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Bactérias/efeitos dos fármacos , Limosilactobacillus fermentum/metabolismo , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Microbioma Gastrointestinal , Humanos
3.
PLoS One ; 15(7): e0235985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678865

RESUMO

Chronic constipation (CC) is one of the most common gastrointestinal disorders worldwide. Its pathogenesis, however, remains largely unclear. The purpose of the present work was to gain an insight into the role of contractility and microbiota in the etiology of CC. To this end, we studied spontaneous and evoked contractile activity of descending colon segments from patients that have undergone surgery for refractory forms of CC. The juxta-mucosal microbiota of these colon samples were characterized with culture-based and 16S rRNA sequencing techniques. In patients with CC the spontaneous colonic motility remained unchanged compared to the control group without dysfunction of intestinal motility. Moreover, contractions induced by potassium chloride and carbachol were increased in both circular and longitudinal colonic muscle strips, thus indicating preservation of contractile apparatus and increased sensitivity to cholinergic nerve stimulation in the constipated intestine. In the test group, the gut microbiota composition was assessed as being typically human, with four dominant bacterial phyla, namely Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria, as well as usual representation of the most prevalent gut bacterial genera. Yet, significant inter-individual differences were revealed. The phylogenetic diversity of gut microbiota was not affected by age, sex, or colonic anatomy (dolichocolon, megacolon). The abundance of butyrate-producing genera Roseburia, Coprococcus, and Faecalibacterium was low, whereas conventional probiotic genera Lactobacillus and Bifidobacteria were not decreased in the gut microbiomes of the constipated patients. As evidenced by our study, specific microbial biomarkers for constipation state are absent. The results point to a probable role played by the overall gut microbiota at the functional level. To our knowledge, this is the first comprehensive characterization of CC pathogenesis, finding lack of disruption of motor activity of colonic smooth muscle cells and insufficiency of particular members of gut microbiota usually implicated in CC.


Assuntos
Colo/microbiologia , Colo/fisiopatologia , Constipação Intestinal/microbiologia , Constipação Intestinal/fisiopatologia , Microbioma Gastrointestinal , Contração Muscular , Adulto , Idoso , Doença Crônica , Classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Front Microbiol ; 8: 1666, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919884

RESUMO

Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.

5.
Int J Microbiol ; 2017: 9869145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133483

RESUMO

Cadmium (Cd) and lead (Pb) are heavy metals, important environmental pollutants, and potent toxicants to organism. Lactic acid bacteria (LAB) have been reported to remove Cd and Pb from solutions and therefore represent a useful tool for decontamination of food and beverages from heavy metals. Heavy metal ion binding by LAB was reported as metabolism-independent surface process. In this work ten Lactobacillus strains were investigated with respect to hydrophobicity, Lewis acid-base, and electrostatic properties of their outer cell surface in order to characterize their Cd and Pb removal capacity. Seven L. plantarum and L. fermentum strains were shown to remove Cd from culture medium. The metabolism-dependent accumulation mechanism of Cd removal was proposed based on extended character of Cd binding and lack of correlation between any of the surface characteristics and Cd removal. The results of this study should be considered when selecting probiotic strains for people at risk of Cd exposure.

6.
Chem Commun (Camb) ; 49(39): 4208-10, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23292434

RESUMO

Biomimetic architectural assembly of clay nanotube shells on yeast cells was demonstrated producing viable artificial hybrid inorganic-cellular structures (armoured cells). These modified cells were preserved for one generation resulting in the intact second generation of cells with delayed germination.


Assuntos
Silicatos de Alumínio/química , Materiais Biomiméticos/química , Nanotubos/química , Materiais Biomiméticos/metabolismo , Argila , Eletrólitos/química , Fluoresceína-5-Isotiocianato/química , Poliaminas/química , Poliestirenos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA