Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893400

RESUMO

The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of -8.9, -8.7 and -8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Compostos Fitoquímicos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , COVID-19/virologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
2.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573498

RESUMO

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Assuntos
Carvão Vegetal , Poluentes Ambientais , Áreas Alagadas , Monitoramento Ambiental , Biodegradação Ambiental , Solo , Água
3.
Trop Anim Health Prod ; 56(3): 105, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502249

RESUMO

Buffaloes are considered animals of the future with the ability to survive under unfavorable conditions. However, the lack of access to superior germplasm poses a significant challenge to increasing buffalo production. Resveratrol has been shown to improve oocyte quality and developmental competence in various animals during in vitro embryo development. However, limited information is available on the use of resveratrol to improve the in vitro maturation and development competence of Nili Ravi buffalo oocytes. Therefore, the current study aimed to investigate the influence of different concentrations of resveratrol on the maturation, fertilization, and development of buffalo oocytes under in vitro conditions. Oocytes were collected from ovaries and subjected to in vitro maturation (IVM) using varying concentrations of resveratrol (0 µM, 0.5 µM, 1 µM, 1.5 µM, and 2 µM), and the maturation process was assessed using a fluorescent staining technique. Results indicated no significant differences in oocyte maturation, morula rate, and blastocyst rate among the various resveratrol concentrations. However, the cleavage rate notably increased with 1 µM and 1.5 µM concentrations of resveratrol (p < 0.05). In conclusion, the study suggests that adding 1 µM of resveratrol into the maturation media may enhance the cleavage and blastocyst hatching of oocytes of Nili Ravi buffaloes. These findings hold promise for advancing buffalo genetics, reproductive performance, and overall productivity, offering potential benefits to the dairy industry, especially in Asian countries.


Assuntos
Bison , Búfalos , Feminino , Animais , Resveratrol/farmacologia , Fertilização in vitro/veterinária , Oócitos , Ovário
4.
Environ Sci Technol ; 57(16): 6682-6694, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053562

RESUMO

High-capacity adsorption and removal of complex volatile organic compounds (VOCs) from real-world environments is a tough challenge for researchers. Herein, a swellable array adsorption strategy was proposed to realize the synergistic adsorption of toluene and formaldehyde on the flexible double hypercross-linked polymers (FD-HCPs). FD-HCPs exhibited multiple adsorption sites awarded by a hydrophobic benzene ring/pyrrole ring and a hydrophilic hydroxyl structural unit. The array benzene ring, hydroxyl, and pyrrole N sites in FD-HCPs effectively captured toluene and formaldehyde molecules through π-π conjugation and electrostatic interaction and weakened their mutual competitive adsorption. Interestingly, the strong binding force of toluene molecules to the skeleton deformed the pore structure of FD-HCPs and generated new adsorption microenvironments for the other adsorbate. This behavior significantly improved the adsorption capacity of FD-HCPs for toluene and formaldehyde by 20% under multiple VOCs. Moreover, the pyrrole group in FD-HCPs greatly hindered H2O molecule diffusion in the pore, thus efficiently weakening the competitive adsorption of H2O toward VOCs. These fascinating properties enabled FD-HCPs to achieve synergistic adsorption for multicomponent VOC vapor under a highly humid environment and overcame single-species VOC adsorption properties on state-of-the-art porous adsorbents. This work provides the practical feasibility of synergistic adsorption to remove complex VOCs in real-world environments.


Assuntos
Tolueno , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Benzeno , Polímeros , Adsorção , Formaldeído
5.
J Enzyme Inhib Med Chem ; 38(1): 2231170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470409

RESUMO

This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.


Assuntos
Aldeído Redutase , Hipoglicemiantes , Animais , Camundongos , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Cinética , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia
6.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679361

RESUMO

Digitization and automation have always had an immense impact on healthcare. It embraces every new and advanced technology. Recently the world has witnessed the prominence of the metaverse which is an emerging technology in digital space. The metaverse has huge potential to provide a plethora of health services seamlessly to patients and medical professionals with an immersive experience. This paper proposes the amalgamation of artificial intelligence and blockchain in the metaverse to provide better, faster, and more secure healthcare facilities in digital space with a realistic experience. Our proposed architecture can be summarized as follows. It consists of three environments, namely the doctor's environment, the patient's environment, and the metaverse environment. The doctors and patients interact in a metaverse environment assisted by blockchain technology which ensures the safety, security, and privacy of data. The metaverse environment is the main part of our proposed architecture. The doctors, patients, and nurses enter this environment by registering on the blockchain and they are represented by avatars in the metaverse environment. All the consultation activities between the doctor and the patient will be recorded and the data, i.e., images, speech, text, videos, clinical data, etc., will be gathered, transferred, and stored on the blockchain. These data are used for disease prediction and diagnosis by explainable artificial intelligence (XAI) models. The GradCAM and LIME approaches of XAI provide logical reasoning for the prediction of diseases and ensure trust, explainability, interpretability, and transparency regarding the diagnosis and prediction of diseases. Blockchain technology provides data security for patients while enabling transparency, traceability, and immutability regarding their data. These features of blockchain ensure trust among the patients regarding their data. Consequently, this proposed architecture ensures transparency and trust regarding both the diagnosis of diseases and the data security of the patient. We also explored the building block technologies of the metaverse. Furthermore, we also investigated the advantages and challenges of a metaverse in healthcare.


Assuntos
Blockchain , Humanos , Inteligência Artificial , Confiança , Segurança Computacional , Atenção à Saúde
7.
J Environ Manage ; 337: 117706, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933533

RESUMO

The present study was done to investigate and compare the photocatalytic and antibacterial activity of two in situ Manganese doped ternary nanocomposites. The dual ternary hybrid systems comprised Mn-doped Ag2WO4 coupled with MoS2-GO and Mn-doped MoS2 coupled with Ag2WO4-GO. Both hierarchical alternate Mn-doped ternary heterojunctions formed efficient plasmonic catalysts for wastewater treatment. The novel nanocomposites were well-characterized using XRD, FTIR, SEM-EDS, HR-TEM, XPS, UV-VIS DRS, and PL techniques confirming the successful insertion of Mn+2 ions in respective host substrates. The bandgap of the ternary nanocomposites evaluated by the tauc plot showed them visible light-active nanocomposites. The photocatalytic ability of both Mn-doped coupled nanocomposites was investigated against the dye methylene blue. Both ternary nanocomposites showed excellent sunlight harvesting ability for dye degradation in 60 min. The maximum catalytic efficiency of both photocatalysts was obtained at a solution pH value of 8, photocatalyst dose and oxidant dose of 30 mg/100 mL and 1 mM for Mn-Ag2WO4/MoS2-GO, 50 mg/100 mL, 3 mM for Mn-MoS2/Ag2WO4-GO keeping IDC of 10 ppm for all photocatalysts. The nanocomposites showed excellent photocatalytic stability after five successive cycles. The response surface methodology was used as a statistical tool for the evaluation of the photocatalytic response of several interacting parameters for dye degradation by ternary composites. The antibacterial activity was determined by the inactivation of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria by support-based doped ternary hybrids.


Assuntos
Molibdênio , Nanocompostos , Luz , Antibacterianos/farmacologia , Luz Solar , Nanocompostos/química , Catálise
8.
Molecules ; 28(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764352

RESUMO

Marek's disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of -12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.

9.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894501

RESUMO

Rapid industrialization and urbanization are the two significant issues causing environmental pollution. The polluted water from various industries contains refractory organic materials such as dyes. Heterogeneous photocatalysis using semiconductor metal oxides is an effective remediation technique for wastewater treatment. In this research, we used a co-precipitation-assisted hydrothermal method to synthesize a novel I-FeWO4/GO sunlight-active nanocomposite. Introducing dopant reductive iodine species improved the catalytic activity of FeWO4/GO. I- ions improved the catalytic performance of H2O2 by doping into FeWO4/GO composite. Due to I- doping and the introduction of graphene as a support medium, enhanced charge separation and transfer were observed, which is crucial for efficient heterogeneous surface reactions. Various techniques, like FTIR, SEM-EDX, XRD, and UV-Vis spectroscopy, were used to characterize composites. The Tauc plot method was used to calculate pristine and iodine-doped FeWO4/GO bandgap. Iodine doping reduced the bandgap from 2.8 eV to 2.6 eV. The degradation of methylene blue (MB) was evaluated by optimizing various parameters like catalyst concentration, oxidant dose, pH, and time. The optimum conditions for photocatalysts where maximum degradation occurred were pH = 7 for both FeWO4/GO and I-FeWO4/GO; oxidant dose = 9 mM and 7 mM for FeWO4/GO and I-FeWO4/GO; and catalyst concentration = 30 mg and 35 mg/100 mL for FeWO4/GO and I-FeWO4/GO; the optimum time was 120 min. Under these optimum conditions, FeWO4/GO and I-FeWO4/GO showed 92.0% and 97.0% degradation of MB dye.

10.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446769

RESUMO

Potentilla nepalensis Hook is a perennial Himalayan medicinal herb of the Rosaceae family. The present study aimed to evaluate biological activities such as the antioxidant, antibacterial, and anticancer activities of roots and shoots of P. nepalensis and its synergistic antibacterial activity with antibacterial drugs. Folin-Ciocalteau and aluminium chloride methods were used for the calculation of total phenolic (TPC) and flavonoid content (TFC). A DPPH radical scavenging assay and broth dilution method were used for the determination of the antioxidant and antibacterial activity of the root and shoot extracts of P. nepalensis. Cytotoxic activity was determined using a colorimetric MTT assay. Further, phytochemical characterization of the root and shoot extracts was performed using the Gas chromatography-mass spectrophotometry (GC-MS) method. The TPC and TFC were found to be higher in the methanolic root extract of P. nepalensis. The methanolic shoot extract of P. nepalensis showed good antioxidant activity, while then-hexane root extract of P. nepalensis showed strong cytotoxic activity against tested SK-MEL-28 cells. Subsequently, in silico molecular docking studies of the identified bioactive compounds predicted potential anticancer properties. This study can lead to the production of new herbal medicines for various diseases employing P. nepalensis, leading to the creation of new medications.


Assuntos
Melanoma , Plantas Medicinais , Potentilla , Simulação de Acoplamento Molecular , Antioxidantes/química , Potentilla/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/química , Antibacterianos/farmacologia , Metanol/química , Melanoma/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Computadores
11.
Artigo em Inglês | MEDLINE | ID: mdl-37800681

RESUMO

In this study, ZnFe2O4-Polyaniline (PANI), ZnFe2O4-Polystyrene (PST), and ZnFe2O4-Polypyrrole (Ppy) nanocomposites were synthesized by the adsorption method and characterized by field emission scanning electron microscopy and Fourier transform infrared spectrometer. Batch adsorption experiments were conducted for removing two types of hazardous dyes Red X-GRL and Direct Sky Blue 51 from an aqueous solution and the effect of pH, adsorbent dosage, contact time, and initial concentration of dyes were investigated. Meanwhile, kinetic, isotherm, and thermodynamic parameters were also determined. The electrolyte and surfactant effect was also tested for the prepared nanocomposites. To test the reusability desorption study was also conducted.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Polímeros/química , Corantes/química , Águas Residuárias , Pirróis/química , Poliestirenos , Nanocompostos/química , Termodinâmica , Adsorção , Cinética , Poluentes Químicos da Água/análise
12.
Environ Res ; 206: 112280, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756916

RESUMO

Rapid industrialization is causing a serious threat for the environment. Therefore, this research was aimed in developing ceramic cobalt ferrite (CoFe2O4) nanocomposite photocatalyst coated with coal fly ash (CFA-CoFe2O4) using facile hydrothermal synthesis route and their applications against methylene blue. The pristine cobalt ferrite photocatalyst was also prepared, characterized, and applied for efficiency comparison. Prepared photocatalyst were characterized by X-ray diffraction (XRD), fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Optical response of catalysts was check using photoluminescence spectroscopy (PL). pH drift method was used for the surface charge characteristics of the material under acidic and basic conditions of solution pH. The photocatalytic degradation potential of all the materials were determined under ultra-violet irradiations. The influencing reaction parameters like pH, catalyst dose, oxidant dose, dye concentration, and irradiation time, were sequentially optimized to obtain best suited conditions. The 99% degradation of 10 ppm methylene blue was achieved within 60 min of reaction time under pH = 5 and 7, catalyst dose = 10 and 12 mg/100 mL, oxidant = 12 mM and 5 mM for cobalt ferrite and CFA-CoFe2O4 photocatalysts, respectively. Afterwards, the radical scavenging experiments were conducted to find out the effective radical scavengers (˙OH, h+, and e-) in photocatalytic degradation process. The kinetic study of the process was done by applying 1st order, 2nd order, and BMG models. Statistical assessment of interaction effect among experimental variables was achieved using response surface methodology (RSM).


Assuntos
Azul de Metileno , Nanocompostos , Catálise , Carvão Mineral , Cinza de Carvão , Azul de Metileno/química , Nanocompostos/química
13.
Environ Res ; 211: 113113, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283080

RESUMO

Perfluoroalkyl acids (PFAAs) are of global interest due to their persistence in the aquatic environment. This study assessed the occurrence of PFAAs in the Indus Drainage System and discerned their potential sources and environmental risks for the first time in Pakistan. 13 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkyl sulfonates (PFSAs) were analyzed to verify the dominant prevalence of short-chain PFAAs in the environment since the phase-out of long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). A significant variation (p ≤ 0.05) of individual PFAAs between the monitoring sites was confirmed by data normality tests Kolmogorov-Smirnov and Shapiro-Wilk, suggesting that different locations contribute differently to individual PFAAs concentrations. ΣPFAAs concentrations in riverine water and sediments ranged from 2.28 to 221.75 ng/L and 0.78-29.19 ng/g dw, respectively. PFBA, PFPeA, and PFHxA were the most abundant PFAAs, and on average accounted for 14.64, 13.75, and 12.97 ng/L of ∑PFAAs in riverine water and 0.34, 0.64, and 0.79 ng/g dw of ∑PFAAs in sediments. ΣPFAAs mean contamination in the drainage was significantly (p < 0.05) high in River Chenab followed by River Indus > Soan > Ravi > Kabul > Swat with more prevalence of short-chain (C4-C7) PFCAs followed by PFOA, PFBS, PFOS, PFNA, PFDA, PFHxS, PFUnDA, and PFDoDA. The correlation analysis determined the PFAAs' fate and distribution along the drainage, indicating that PFAAs with carbon chains C4-C12, except for PFSAs with carbon chains C6-C8, were most likely contaminated by the same source, the values of Kd and Koc increased linearly with the length of the perfluoroalkyl carbon chain, better understand the transport and partitioning of individual PFAAs between riverine water and sediments, where the HCA and PCA discerned industrial/municipal wastewater discharge, agricultural and surface runoff from nearby fields, and urban localities as potential sources of PFAAs contamination. The collective mass flux of short-chain (C4-C7) PFCAs was 5x higher than that of PFOS + PFOA, suggesting a continuous shift in the production and usage of fluorinated replacements for long-chain PFAAs with short-chain homologs. In terms of risk, individual PFAAs pollution in the drainage was within the world's risk thresholds for human health, with the exception of PFBA, PFPeA, PFHpA, PFHxA, PFOA, PFNA, and PFBS, whereas for ecology, the concentrations of individual PFAAs did not exceed the ecological risk thresholds of the United States of America, Canada, European Union (EU), Italy, Australia, and New Zealand, with the exception of PFSAs, whose detected individual concentrations were significantly higher than the EU, Australian and New Zealander PFSAs guidelines of 0.002 µg/L, 0.00047 µg/L, 0.00065 µg/L, 0.00013 µg/L, and 0.00023 µg/L, respectively, which may pose chronic risks to the regional ecosystem and population.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Austrália , Carbono/análise , China , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Água/análise , Poluentes Químicos da Água/análise
14.
Int J Vitam Nutr Res ; 92(1): 35-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100300

RESUMO

Recently, the outbreak of severe acute respiratory syndrome cornoavirus-2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become a great perturbation all around the globe and has many devastating effects on every aspect of life. Apart from the oxygen therapy and extracorporeal membrane oxygenation, Remdesivir and Dexamethasone have been proven to be efficacious against COVID-19, along with various vaccine candidates and monoclonal antibody cocktail therapy for Regeneron. All of these are currently at different stages of clinical trials. People with weak immunity are more prone to a severe infection of SARS-CoV-2. Therefore, early and judicious nutritional supplementation along with pharmacological treatment and clinician collaborations are critical in restituting the current situation. Nutritional supplements help in acquiring strong immunity to prevent the progression of disease any further. Vitamin C, vitamin D, selenium, zinc and many other nutritional and dietary supplements inhibit the production of inflammatory cytokines during a viral infection and prevents several unwanted symptoms of infection. Many dietary components like citrus fruits, black elderberry, ginger, and probiotics have the ability to attack viral replication. These supplements can also tame the overriding immune system during coronavirus infection. Keeping in view these facts, nutritional and dietary supplements can be used along with other management modalities. These nutritional and dietary supplements are potential candidates to curb the convulsive unfolding of novel COVID-19, in combination with other standard treatment protocols. In this review, various search engines were used to exploit available literature in order to provide a comprehensive review on nutritional and dietary supplements with respect to the viral infections. It will also provide a brief overview on some of the clinical trials that are in progress to assess the role of nutritional supplements, either alone or in combination with other pharmacological drugs, in fight against COVID-19.


Assuntos
COVID-19 , Ensaios Clínicos como Assunto , Suplementos Nutricionais , Humanos , SARS-CoV-2 , Vitamina D , Vitaminas
15.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014579

RESUMO

Wastewater from the textile industries contaminates the natural water and affects the aquatic environment, soil fertility and biological ecosystem through discharge of different hazardous effluents. Therefore, it is essential to remove such dissolved toxic materials from water by applying more efficient techniques. We performed a comparative study on the removal of rhodamine B (RhB) and Nile blue (NB) from water through a catalytic/photocatalytic approach while using a CuO-SiO2 based nanocomposite. The CuO-SiO2 nanocomposite was synthesized through a sol-gel process using copper nitrate dihydrate and tetraethylorthosilicate as CuO and SiO2 precursors, respectively, with ammonia solution as the precipitating agent. The synthesized nanocomposites were characterized, for their structure, morphology, crystallinity, stability, surface area, pore size and pore volume, by using a scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. The CuO-SiO2 nanocomposite was used for potential environmental applications in the terms of its catalytic and photocatalytic activities toward the degradation of rhodamine B (RhB) and Nile blue (NB) dyes, in the presence and absence of light, while monitoring the degradation process of dyes by UV-Visible spectroscopy. The catalytic efficiency of the same composite was studied and discussed in terms of changes in the chemical structures of dyes and other experimental conditions, such as the presence and absence of light. Moreover, the composite showed 85% and 90% efficiency towards the removal of rhodamine B and Nile blue dyes respectively. Thus, the CuO-SiO2 nanocomposite showed better efficiency toward removal of Nile blue as compared to rhodamine B dye while keeping other experimental variables constant. This can be attributed to the structure-property relationships and compatibility of a catalyst with the molecular structures of dyes.


Assuntos
Corantes , Dióxido de Silício , Cobre , Ecossistema , Oxazinas , Rodaminas , Água
16.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544069

RESUMO

Visible active mixed metal ferrite intercalated semiconductor photocatalyst Mn0.6Zn0.4Fe2O4/g-C3N4was prepared via facile hydrothermal and liquid assembly method for methylene blue (MB) dye degradation. The prepared samples were well characterized in term of their functional groups, crystallinity, elemental analysis, surface morphology using Fourier transform infrared spectroscopy, x-ray diffraction spectroscopy, energy dispersive x-ray, and scanning electron microscopy, respectively. The optical response of catalysts was checked by estimating the energy band gap (Eg) of semiconductor photocatalysts using UV-vis spectroscopy. The photoluminescence spectroscopy was also performed to estimate the reduction in emission intensity after insertion of g-C3N4into Mn0.6Zn0.4Fe2O4.The novel composition of Mn0.6Zn0.4Fe2O4with g-C3N4,improved the optical response of pristine photocatalysts due to the reduction in the energy band gap and insertion of heterojunction. The surface area analysis of Mn0.6Zn0.4Fe2O4and Mn0.6Zn0.4Fe2O4/g-C3N4were acquired by Brunauer-Emmett-Teller. Point zero charge was also determined to observe the surface behavior of composite under different solution pH. Various parameters such as pH, catalyst dose, oxidant dose, irradiation time and initial dye concentration were optimized, and their effects were studied in photo-Fenton process. It was observed that 98% MB dye was degraded under optimized conditions (pH = 8, composite dose = 50 mg/100 ml, oxidant dose = 7 mM, initial dye conc. = 10 ppm, and irradiation time = 120 min). The results showed that when the ferrites of mixed metals (Mn, Zn) were used with g-C3N4their photocatalytic activity enhanced due to mutual effect of both mixed metals ferrite and g-C3N4, which is considerably higher than their individual effect already reported. Furthermore, the combined effect of independent variables was evaluated by response surface methodology.

17.
Nanotechnology ; 32(34)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34015775

RESUMO

Demand for freshwater increases day by day as impurity increases due to the industrial, domestic and municipal waste in the water. Inappropriate disposal of coal fly ash (CFA) is not eco-friendly, therefore the need is to convert it into some beneficial material like zeolite. Zeolite-based composites with metal oxides show high cation interchange capacity, fast adsorption, and high efficiency for the removal of wastewater pollutants. In this research work, metal oxide along with zeolite (derived for CFA) was prepared. Metal oxide (WO3) and magnetite (Fe3O4) based zeolite composite was used adsorption enhanced photocatalytic degradation of rhodamine B dye. Ternary composite (zeolite/WO3/Fe3O4) was characterized using a scanning electron microscope, x-ray diffraction, Fourier transform infrared spectroscopy. The bandgap energy of composite was estimated using Tauc plot method from the data obtained after UV-visible spectroscopy. The behavior of composite under acidic and basic conditions was analyzed using pHpzcof the composite. Influencing parameters like pH, dye concentration, contact time, and catalyst dosage was optimized under ultraviolet irradiations (254 nm). The results show that maximum degradation was achieved with zeolite/WO3/Fe3O4composite under optimized conditions of pH = 7, catalyst dosage = 10 mg/100 ml, RhB concentration 10 ppm, and time 60 min. The first-order kinetic model was best fitted to the experimental data. RSM was used as a statistical tool to analyze the data.

18.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577017

RESUMO

Flavonoids are key secondary metabolites that are biologically active and perform diverse functions in plants such as stress defense against abiotic and biotic stress. In addition to its importance, no comprehensive information has been available about the secondary metabolic response of Populus tree, especially the genes that encode key enzymes involved in flavonoid biosynthesis under drought stress. In this study, the quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the expression of flavonoid biosynthesis genes (PtPAL, Pt4-CL, PtCHS, PtFLS-1, PtF3H, PtDFR, and PtANS) gradually increased in the leaves of hybrid poplar (P. tremula × P. alba), corresponding to the drought stress duration. In addition, the activity and capacity of antioxidants have also increased, which is positively correlated with the increment of phenolic, flavonoid, anthocyanin, and carotenoid compounds under drought stress. As the drought stress prolonged, the level of reactive oxygen species such as hydrogen peroxide (H2O2) and singlet oxygen (O2-) too increased. The concentration of phytohormone salicylic acid (SA) also increased significantly in the stressed poplar leaves. Our research concluded that drought stress significantly induced the expression of flavonoid biosynthesis genes in hybrid poplar plants and enhanced the accumulation of phenolic and flavonoid compounds with resilient antioxidant activity.


Assuntos
Secas , Populus , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
19.
Chem Zvesti ; 75(12): 6487-6497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393329

RESUMO

An outbreak of respiratory disorder caused by coronavirus has been named as coronavirus infection 2019 (COVID-19). To find a specific treatment against this disease researchers are at the frontline. To cure COVID-19, favipiravir (FPV) has been reported as an effective drug based on its high recovery rate. Among nanomaterials, fullerene C60 has achieved enormous attention as a drug delivery vehicle due to its good bioavailability and low toxicity. Hence, in this work, we have investigated the potential of metal-doped fullerene as a drug carrier, based on DFT calculations by using M06-2X functional and 6-31G(d) basis set in water media. In this research electronic parameters and adsorption energy of FPV on interaction with metal-doped (Cr, Fe, and Ni) fullerene is studied. The charge transfer between drug and doped fullerene has been studied through electrophilicity indexes. The structural and electronic properties are explored in terms of adsorption energy through frontier molecular orbital (FMO) and density of state (DOS). It is observed that doping of fullerene C60 with Cr, Fe, and Ni metals significantly enhances the drug delivery rate and provides numerous advantages including controlled drug release at specific target sites which minimize the generic collection in vivo and reduce the side effects. Thusly, it is suggested that our designed metal-doped complexes might be efficient candidates as drug delivery materials for COVID-19 infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-021-01815-4.

20.
Pak J Pharm Sci ; 34(2(Supplementary)): 773-779, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275814

RESUMO

Four series of tetrahydro-2H-1,3,5-thiadiazine thione derivatives were screened for their in vitro antiproliferative activities against two human cancerous PC3 and HeLa cell lines. The cytotoxicity of all the compounds (series A-D) was also determined on mammalian mouse fibroblast 3T3 cells. Most of the compounds showed significant anticancer potential against both cancer cell lines within the range of IC50 = 6.4-29.9 and 2.4-23.8 M respectively when compared with standard doxorubicin (IC50 = 0.3 M). All compounds demonstrated a notable selectivity for Hela cells and found either non-toxic or relatively less toxic for 3T3 cell lines model. The structure-activity relationship indicated that antiproliferative activity mainly influenced by the nature and position of substituents at thidiazine nucleus. In general, the presence of aryl groups for example 3,4-(OMe) 2.Bzl and CH(Ph)Me at N-3 position resulted in a significant activity. Under enzymatic hydrolysis, complete conversion (100%) of ester derivative of thiadiazine thione (10a) into its acidic counterpart (7c) was achieved during 20 min which indicated that these types of THTT ester derivatives can be a possible lead for future investigations as prodrug anticancer probes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Pró-Fármacos/farmacologia , Tiazinas/farmacologia , Tionas/farmacologia , Células 3T3/efeitos dos fármacos , Animais , Células HeLa/efeitos dos fármacos , Humanos , Camundongos , Células PC-3/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA